最大的和(最大子矩阵和:贪心&&前缀和+dp)

该博客介绍了如何找到一个二维矩阵中具有最大和的子矩阵,通过计算每列的前缀和,将问题转化为一维问题,并使用贪心策略和动态规划来优化算法。在时间复杂度为O(n^3)的情况下,实现求解最大子矩阵和的方法。

给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为1 * 1或更大的连续子阵列。

矩形的总和是该矩形中所有元素的总和。

在这个问题中,具有最大和的子矩形被称为最大子矩形。

例如,下列数组:

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 

其最大子矩形为:

9 2 
-4 1 
-1 8 

它拥有最大和15。

输入格式

输入中将包含一个N*N的整数数组。

第一行只输入一个整数N,表示方形二维数组的大小。

从第二行开始,输入由空格和换行符隔开的N2N2个整数,它们即为二维数组中的N2N2个元素,输入顺序从二维数组的第一行开始向下逐行输入,同一行数据从左向右逐个输入。

数组中的数字会保持在[-127,127]的范围内。

输出格式

输出一个整数,代表最大子矩形的总和。

数据范围

1≤N≤100

输入样例:

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

输出样例:

15

思路:因为要求矩阵所有数的和,所以可以首先处理出纵向的每一竖列的前缀和,将求一个竖列的和的时间复杂度从o(n)优化成o(1),只需要算出a[j][k]-a[i-1][k],就是以第i行为上界,以第j行为下界,第k列这一竖列的和(虽然只有一条竖线,但也可以看成一个矩形,一个矩形就是由这若干条竖线组成的),然后利用贪心的思想,类似dp的处理方法,在矩阵的上下界(i和j确定的矩阵的高)固定的情况下,枚举k从1到n(即矩阵的宽),要求最大矩阵和,每次一个竖列向右扩展时,得到的矩阵的最大和都与上一个状态的最大和有关,这

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值