D. Extreme Subtraction
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
You are given an array aa of nn positive integers.
You can use the following operation as many times as you like: select any integer 1≤k≤n1≤k≤n and do one of two things:
- decrement by one kk of the first elements of the array.
- decrement by one kk of the last elements of the array.
For example, if n=5n=5 and a=[3,2,2,1,4]a=[3,2,2,1,4], then you can apply one of the following operations to it (not all possible options are listed below):
- decrement from the first two elements of the array. After this operation a=[2,1,2,1,4]a=[2,1,2,1,4];
- decrement from the last three elements of the array. After this operation a=[3,2,1,0,3]a=[3,2,1,0,3];
- decrement from the first five elements of the array. After this operation a=[2,1,1,0,3]a=[2,1,1,0,3];
Determine if it is possible to make all the elements of the array equal to zero by applying a certain number of operations.
Input
The first line contains one positive integer tt (1≤t≤300001≤t≤30000) — the number of test cases. Then tt test cases follow.
Each test case begins with a line containing one integer nn (1≤n≤300001≤n≤30000) — the number of elements in the array.
The second line of each test case contains nn integers a1…ana1…an (1≤ai≤1061≤ai≤106).
The sum of nn over all test cases does not exceed 3000030000.
Output
For each test case, output on a separate line:
- YES, if it is possible to make all elements of the array equal to zero by applying a certain number of operations.
- NO, otherwise.
The letters in the words YES and NO can be outputed in any case.
Example
input
Copy
4
3
1 2 1
5
11 7 9 6 8
5
1 3 1 3 1
4
5 2 1 10
output
Copy
YES
YES
NO
YES
题意:对于给定序列,每次可选一个前缀,使该前缀中的每个数都减去一个数k,或选一个后缀,使该后缀中的每个数都减去一个数k;
问:经过若干次操作是否能将原序列的每个数都变成0?
思路:通过减法操作应该想到用差分序列d,最终每个数为0的状态可等价转换为:d[1]=a[1]=0&&d[1~n]中每个差分数值都为0;
因为差分的性质,以上两个操作,对差分序列的影响就是:d[1]-1,d[i+1]+1和d[i]-1,d[n+1]+1;
我们要做的就是通过d[1](即:a[1])和d[n+1]让差分值都变为0,因为d[1]=0可以最后直接对1的前缀即a[1]操作一定能让d[1]变为0;
观察上式发现,只有差分值为负数的情况才对a[1]产生影响同时可以让差分值为负数的变为0,而让差分值为正数的变为0只对d[n+1]产生影响,对d[1~n]没有影响。
所以最终答案就是判断一下,能否通过a[1]将所有为负数的差分值变为0即可,即:d[1]=a[1]是否大于等于所有负差分值的绝对值之和。
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int maxn=3e4+5;
int a[maxn],d[maxn];
signed main()
{
int t;
cin>>t;
while(t--){
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int s=0;
for(int i=1;i<=n;i++){
d[i]=a[i]-a[i-1];
if(d[i]<0) s-=d[i];
}
cout<<(d[1]>=s?"YES":"NO")<<endl;
}
return 0;
}