D. Extreme Subtraction(思维 差分 构造)

这篇博客讨论了一种编程题目,涉及到对数组进行特定操作以使其所有元素变为零。关键在于利用差分序列分析操作的影响,并通过判断初始元素和负差分值的关系来确定是否可能达到目标状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Extreme Subtraction

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array aa of nn positive integers.

You can use the following operation as many times as you like: select any integer 1≤k≤n1≤k≤n and do one of two things:

  • decrement by one kk of the first elements of the array.
  • decrement by one kk of the last elements of the array.

For example, if n=5n=5 and a=[3,2,2,1,4]a=[3,2,2,1,4], then you can apply one of the following operations to it (not all possible options are listed below):

  • decrement from the first two elements of the array. After this operation a=[2,1,2,1,4]a=[2,1,2,1,4];
  • decrement from the last three elements of the array. After this operation a=[3,2,1,0,3]a=[3,2,1,0,3];
  • decrement from the first five elements of the array. After this operation a=[2,1,1,0,3]a=[2,1,1,0,3];

Determine if it is possible to make all the elements of the array equal to zero by applying a certain number of operations.

Input

The first line contains one positive integer tt (1≤t≤300001≤t≤30000) — the number of test cases. Then tt test cases follow.

Each test case begins with a line containing one integer nn (1≤n≤300001≤n≤30000) — the number of elements in the array.

The second line of each test case contains nn integers a1…ana1…an (1≤ai≤1061≤ai≤106).

The sum of nn over all test cases does not exceed 3000030000.

Output

For each test case, output on a separate line:

  • YES, if it is possible to make all elements of the array equal to zero by applying a certain number of operations.
  • NO, otherwise.

The letters in the words YES and NO can be outputed in any case.

Example

input

Copy

4
3
1 2 1
5
11 7 9 6 8
5
1 3 1 3 1
4
5 2 1 10

output

Copy

YES
YES
NO
YES

 

题意:对于给定序列,每次可选一个前缀,使该前缀中的每个数都减去一个数k,或选一个后缀,使该后缀中的每个数都减去一个数k;

问:经过若干次操作是否能将原序列的每个数都变成0?

思路:通过减法操作应该想到用差分序列d,最终每个数为0的状态可等价转换为:d[1]=a[1]=0&&d[1~n]中每个差分数值都为0

因为差分的性质,以上两个操作,对差分序列的影响就是:d[1]-1,d[i+1]+1和d[i]-1,d[n+1]+1;

我们要做的就是通过d[1](即:a[1])和d[n+1]让差分值都变为0,因为d[1]=0可以最后直接对1的前缀即a[1]操作一定能让d[1]变为0;

观察上式发现,只有差分值为负数的情况才对a[1]产生影响同时可以让差分值为负数的变为0,而让差分值为正数的变为0只对d[n+1]产生影响,对d[1~n]没有影响。

所以最终答案就是判断一下,能否通过a[1]将所有为负数的差分值变为0即可,即:d[1]=a[1]是否大于等于所有负差分值的绝对值之和

代码:

#include <iostream>
#include <algorithm>
#include <cstring>

#define int long long

using namespace std;

const int maxn=3e4+5;

int a[maxn],d[maxn];

signed main()
{
    int t;
    cin>>t;
    while(t--){
        int n;
        cin>>n;
        for(int i=1;i<=n;i++) cin>>a[i];
        int s=0;
        for(int i=1;i<=n;i++){
            d[i]=a[i]-a[i-1];
            if(d[i]<0) s-=d[i];
        }
        cout<<(d[1]>=s?"YES":"NO")<<endl;
    }
    return 0;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值