目录
一、递归定义
程序调用自身的编程技巧称为递归( recursion)。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
二、递归实例
我们假设有以下定义
F(1)=0,F(2)=1
F(n)=F(n-1)+F(n-2)
n的取值范围:n>0;
这个明显地给出了递归边界n=1或2的时候F(n)的值,和递归逻辑F(n)=F(n-1)+F(n-2),即递推公式.所以这个递归函数不难书写
代码如下:
public class F {
public static int getNumber(int n) {
if (n == 1) {
return 0;
} else if (n == 2){
return 1;
} else {
return getNumber(n - 1) + getNumber(n - 2);
}
}
public static void main(String[] args) {
System.out.println(F.getNumber(5));
}
}
三、递归分析
根据我们的定义,我们知道 F(5)=3,过程如下:
F(1)=0,F(2)=1,
F(3)=F(2)+F(1)=1,
F(4)=F(3)+F(2)=2,
F(5)=F(4)+F(3)=3
接下来分析代码是如何一步步 ”递“ 和 “归” 的。
先上一张我理解时做的一张图
首先,F(5)调用了F(4)和F(3) , F(4)调用了F(3)和F(2) , F(3)调用了F(2)和F(1),到了这时出现了边界条件F(2)和F(1),所以 “递” 的过程结束。
接下来就是 “归” 了,从图的右下角开始看起:
F(2)和F(1)分别返回了1和0,所以F(3)=1+0=1;
同理F(4)=1+1=2,F(5)=2+1=3