同时包含一范数和二范数的公式求解问题 Iterative Shrinkage Thresholding Algorithm (ISTA)求解现有目标函数:f(x)=12∥b−Ax∥22+λ∣x−u∣f(x)=\frac{1}{2} \parallel \boldsymbol{b}-\mathbf{A}\boldsymbol{x} \parallel_2^2 + \lambda | \boldsymbol{x}- \boldsymbol{u}|f(x)=21∥b−Ax∥22+λ∣x−u∣其中的变量都为向量,求 x\boldsymbo
PyTorch指定GPU训练 CUDA_VISIBLE_DEVICES 方法一import osimport torchos.environ["CUDA_VISIBLE_DEVICES"]="1, 2" 方法二CUDA_VISIBLE_DEVICES=1 python **.py
pytorch查看网络参数总个数 print("Total number of paramerters in networks is {} ".format(sum(x.numel() for x in net.parameters())))其中net是代码中的网络模型
从Tensor看图像 # 看tensor batch中的第一张图片kan = tensor[0:1, :, :, :].squeeze(0).squeeze(0).cpu()kan = T.ToPILImage()(kan)kan.show()
torch.optim.lr_scheduler.MultiStepLR torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)milestones为一个数组,如 [50,70]. gamma为倍数。如果learning rate开始为0.01 ,则当epoch为50时变为0.001,epoch 为70 时变为0.0001。当last_epoch=-1,设定为初始lr用法optimizer = torch.optim.Adam(net.parameters
什么是 ill-posed 问题 ill-posed就是不well-posed.well-posedness的定义就是解存在唯一以及稳定。适定问题(Well-posed problem)是指满足下列三个要求的问题:1)解是存在的;2)解是惟一的;3)解能根据初始条件连续变化,不会发生跳变,即解必须稳定。这三个要求中,只要有一个不满足,则称之为不适定问题(ill-posed problems)。图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点
在双栏的文章里插入一行并排图片 \begin{figure*}\end{figure*}来破栏,因为好多paper的格式是双栏的,所以有时候放图片可以破栏放置。当然图片属性还有如下的格式\begin{figure}[hbtp]\end{figure}在这里补充说一下浮动图形figure环境, 它能自动调整图形在页面中出现的位置:\begin{figure}[位置]\caption{图的标题}\end{figure}这里[位置]可以是h(当前位置),t(页顶),b(页底),p(另页),如果前面加了个!(感叹号),那么则是
对图片加噪声 from PIL import Imageimport torchfrom torchvision import transforms as Tdef add_noise(input_img, noise_sigma): noise_sigma = noise_sigma / 255 noise_img = torch.clamp(input_img+noise_sigma*torch.randn_like(input_img), 0.0, 1.0) return no.
TV loss class TVLoss(nn.Module): def __init__(self, TVLoss_weight=1): super(TVLoss, self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()
rgb转gray from PIL import Imagedata_root = './DIV2K_train_HR'data_save = './DIV2K_gray'for i in range(800): img_index = i + 1 print(img_index) img_rgb = Image.open(data_root + "/" + str(img_index).zfill(4)+'.png') img_gray = img_rgb.convert('L')
PIL从大图裁剪小图片 from PIL import Imageimport torchimport randomcrop_size = 128# 图片数量为200for i in range(200): print(i) img_index = random.randint(1, 800) # 大图的数量 img = Image.open('./DIV2K_gray' + "/" + str(img_index) + '.png') img_H = img.size[1]
linux服务器出现nvidia-smi没有用 nvidia-smiNVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.step1:sudo apt-get install dkmsstep2: sudo dkms install -m nvidia -v440.44再次输入nvidia-smi时,你熟悉的界面就会
PyTorch在CPU上加载预先训练好的GPU模型 有时候我们在CPU上训练的模型,因为一些原因,切换到GPU上,或者在GPU上训练的模型,因为条件限制,切换到CPU上。 GPU上训练模型时,将权重加载到CPU的最佳方式是什么?今天我们来讨论一下:参考从官方文档中我们可以看到如下方法torch.load('tensors.pt')# 把所有的张量加载到CPU中torch.load('tensors.pt', map_location=la...
windows10 下安装CUDA10.1+cuDNN+PyTorch1.4 CUDA在CUDA官网下载安装包安装时选择自定义安装,不安装显卡驱动。安装成功会自动添加环境变量,无需手动添加。cuDNN在cuDNN官网下载安装包把解压后的三个文件夹复制直接粘贴到安装路径下C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1会自动添加相应的文件。PyTorchPyTorch官网建议使用p...
稀疏编码的经典解法——ISTA算法的推导 \qquad现有一个求稀疏编码的问题:min∥z∥0s.t. x=Dz\min \parallel z \parallel_0 \quad s.t. \ x=Dzmin∥z∥0s.t. x=Dz\qquad其中D∈Rn×mD\in \mathbb{R}^{n\times m}D∈Rn×m, z∈Rmz\in \mathbb{R}^{m}z∈Rm 是 x∈Rnx\in...
向量二范数的求导问题 现有目标函数:f(x)=12∥Ax−b∥22f(x)=\frac{1}{2} \parallel Ax-b \parallel_2^2f(x)=21∥Ax−b∥22其中A∈RN×mA\in \mathbb{R}^{N \times m}A∈RN×m,x∈Rmx \in \mathbb{R}^mx∈Rm,b∈Rnb\in \mathbb{R}^nb∈Rn则求f′(x)f^{'}(x)f...