Mr_Lowbee
码龄7年
关注
提问 私信
  • 博客:123,726
    123,726
    总访问量
  • 30
    原创
  • 40,515
    排名
  • 91
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2017-11-12
博客简介:

Mr_Lowbee的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    244
    当月
    0
个人成就
  • 获得164次点赞
  • 内容获得42次评论
  • 获得743次收藏
  • 代码片获得286次分享
创作历程
  • 1篇
    2024年
  • 2篇
    2022年
  • 3篇
    2021年
  • 16篇
    2020年
  • 8篇
    2019年
成就勋章
TA的专栏
  • PyTorch
    7篇
  • Ubuntu
    5篇
  • sparse
    5篇
  • 代码段
    7篇
  • latex
    1篇
  • 模式识别
    3篇
兴趣领域 设置
  • 人工智能
    opencvpytorch
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

344人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pytorch计算网络参数量和Flops

输出的参数是B,(/1024/1024/1024)G,(/1024/1024/1024/1024)T。输出的参数是除以一百万(/1000000)M,
原创
发布博客 2024.09.07 ·
505 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

Linux查看文件夹大小

Linux查看文件夹大小
原创
发布博客 2022.10.10 ·
1424 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

同时包含一范数和二范数的公式求解问题

Iterative Shrinkage Thresholding Algorithm (ISTA)求解现有目标函数:f(x)=12∥b−Ax∥22+λ∣x−u∣f(x)=\frac{1}{2} \parallel \boldsymbol{b}-\mathbf{A}\boldsymbol{x} \parallel_2^2 + \lambda | \boldsymbol{x}- \boldsymbol{u}|f(x)=21​∥b−Ax∥22​+λ∣x−u∣其中的变量都为向量,求 x\boldsymbo
原创
发布博客 2022.03.17 ·
2037 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

PyTorch指定GPU训练 CUDA_VISIBLE_DEVICES

方法一import osimport torchos.environ["CUDA_VISIBLE_DEVICES"]="1, 2" 方法二CUDA_VISIBLE_DEVICES=1 python **.py
原创
发布博客 2021.06.03 ·
1406 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

pytorch查看网络参数总个数

print("Total number of paramerters in networks is {} ".format(sum(x.numel() for x in net.parameters())))其中net是代码中的网络模型
原创
发布博客 2021.04.16 ·
623 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从Tensor看图像

# 看tensor batch中的第一张图片kan = tensor[0:1, :, :, :].squeeze(0).squeeze(0).cpu()kan = T.ToPILImage()(kan)kan.show()
原创
发布博客 2021.01.18 ·
301 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

ADMM算法

https://www.cnblogs.com/wildkid1024/p/11041756.html
原创
发布博客 2020.11.30 ·
639 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

torch.optim.lr_scheduler.MultiStepLR

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)milestones为一个数组,如 [50,70]. gamma为倍数。如果learning rate开始为0.01 ,则当epoch为50时变为0.001,epoch 为70 时变为0.0001。当last_epoch=-1,设定为初始lr用法optimizer = torch.optim.Adam(net.parameters
原创
发布博客 2020.11.20 ·
1539 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

什么是 ill-posed 问题

ill-posed就是不well-posed.well-posedness的定义就是解存在唯一以及稳定。适定问题(Well-posed problem)是指满足下列三个要求的问题:1)解是存在的;2)解是惟一的;3)解能根据初始条件连续变化,不会发生跳变,即解必须稳定。这三个要求中,只要有一个不满足,则称之为不适定问题(ill-posed problems)。图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点
原创
发布博客 2020.11.17 ·
6884 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

在双栏的文章里插入一行并排图片

\begin{figure*}\end{figure*}来破栏,因为好多paper的格式是双栏的,所以有时候放图片可以破栏放置。当然图片属性还有如下的格式\begin{figure}[hbtp]\end{figure}在这里补充说一下浮动图形figure环境, 它能自动调整图形在页面中出现的位置:\begin{figure}[位置]\caption{图的标题}\end{figure}这里[位置]可以是h(当前位置),t(页顶),b(页底),p(另页),如果前面加了个!(感叹号),那么则是
原创
发布博客 2020.09.18 ·
1883 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

对图片加噪声

from PIL import Imageimport torchfrom torchvision import transforms as Tdef add_noise(input_img, noise_sigma): noise_sigma = noise_sigma / 255 noise_img = torch.clamp(input_img+noise_sigma*torch.randn_like(input_img), 0.0, 1.0) return no.
原创
发布博客 2020.08.13 ·
663 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

TV loss

class TVLoss(nn.Module): def __init__(self, TVLoss_weight=1): super(TVLoss, self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()
原创
发布博客 2020.08.01 ·
535 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

rgb转gray

from PIL import Imagedata_root = './DIV2K_train_HR'data_save = './DIV2K_gray'for i in range(800): img_index = i + 1 print(img_index) img_rgb = Image.open(data_root + "/" + str(img_index).zfill(4)+'.png') img_gray = img_rgb.convert('L')
原创
发布博客 2020.07.24 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PIL从大图裁剪小图片

from PIL import Imageimport torchimport randomcrop_size = 128# 图片数量为200for i in range(200): print(i) img_index = random.randint(1, 800) # 大图的数量 img = Image.open('./DIV2K_gray' + "/" + str(img_index) + '.png') img_H = img.size[1]
原创
发布博客 2020.07.24 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

linux服务器出现nvidia-smi没有用

nvidia-smiNVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.step1:sudo apt-get install dkmsstep2: sudo dkms install -m nvidia -v440.44再次输入nvidia-smi时,你熟悉的界面就会
原创
发布博客 2020.05.09 ·
2948 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

PyTorch在CPU上加载预先训练好的GPU模型

有时候我们在CPU上训练的模型,因为一些原因,切换到GPU上,或者在GPU上训练的模型,因为条件限制,切换到CPU上。 GPU上训练模型时,将权重加载到CPU的最佳方式是什么?今天我们来讨论一下:参考从官方文档中我们可以看到如下方法torch.load('tensors.pt')# 把所有的张量加载到CPU中torch.load('tensors.pt', map_location=la...
原创
发布博客 2020.04.05 ·
1700 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

exploration dataset

发布资源 2020.03.08 ·
zip

windows10 下安装CUDA10.1+cuDNN+PyTorch1.4

CUDA在CUDA官网下载安装包安装时选择自定义安装,不安装显卡驱动。安装成功会自动添加环境变量,无需手动添加。cuDNN在cuDNN官网下载安装包把解压后的三个文件夹复制直接粘贴到安装路径下C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1会自动添加相应的文件。PyTorchPyTorch官网建议使用p...
原创
发布博客 2020.02.26 ·
5111 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

稀疏编码的经典解法——ISTA算法的推导

\qquad现有一个求稀疏编码的问题:min⁡∥z∥0s.t. x=Dz\min \parallel z \parallel_0 \quad s.t. \ x=Dzmin∥z∥0​s.t. x=Dz\qquad其中D∈Rn×mD\in \mathbb{R}^{n\times m}D∈Rn×m, z∈Rmz\in \mathbb{R}^{m}z∈Rm 是 x∈Rnx\in...
原创
发布博客 2020.02.20 ·
6867 阅读 ·
10 点赞 ·
3 评论 ·
43 收藏

向量二范数的求导问题

现有目标函数:f(x)=12∥Ax−b∥22f(x)=\frac{1}{2} \parallel Ax-b \parallel_2^2f(x)=21​∥Ax−b∥22​其中A∈RN×mA\in \mathbb{R}^{N \times m}A∈RN×m,x∈Rmx \in \mathbb{R}^mx∈Rm,b∈Rnb\in \mathbb{R}^nb∈Rn则求f′(x)f^{'}(x)f...
原创
发布博客 2020.02.18 ·
12251 阅读 ·
36 点赞 ·
9 评论 ·
106 收藏
加载更多