题意:虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
思路:这是一道最短路问题,可以用dijkstra或spfa解决。求出所有出发的站到所有终点站的最短路径中的最小值,这样就重复多次调用dijkstra 或 spfa,但如果运用一些技巧就可大大优化,题目中a,b均是大于1的,所以可以在设一个点作为草儿的家的位置且该点的序号为0,只要把该点与所有始发站之间均建立一条边且距离为0,那么只要以点0为源点调用一次dijkstra或spfa就可以了,我用的是dijkstra,哎,这道题调试了很久,就是找不到错在哪里,最后突然间想到,可能有的目的地是孤立的点(在这里指草儿无法到达的点,即前面未出现过的点)
感想:一遍一遍调试,总会发现错误~
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int inf = 1<<30;
int T,S,D,n;
int map[1111][1111];
int vis[1111],cast[1111];
int s[1111],e[1111];
void Dijkstra()
{
int i,j,minn,pos;
memset(vis,0,sizeof(vis));
vis[0] = 1;
for(i = 0; i<=n; i++)
cast[i] = map[0][i];
for(i = 1; i<=n; i++)
{
minn = inf;
for(j = 1; j<=n; j++)
{
if(cast[j]<minn && !vis[j])
{
pos = j;
minn = cast[j];
}
}
vis[pos] = 1;
for(j = 1; j<=n; j++)
{
if(cast[pos]+map[pos][j]<cast[j] && !vis[j])
cast[j] = cast[pos]+map[pos][j];
}
}
}
int main()
{
int i,j,x,y,z,start,end;
while(~scanf("%d%d%d",&T,&S,&D))
{
n = 0;
for(i = 0; i<1111; i++)
{
for(j = 0; j<1111; j++)
map[i][j] = inf;
map[i][i] = 0;
}
while(T--)
{
scanf("%d%d%d",&x,&y,&z);
n = max(max(n,x),y);
if(z<map[x][y])
map[x][y] = map[y][x] = z;
}
int minn = inf;
for(i = 0; i<S; i++)
{
scanf("%d",&s[i]);
map[0][s[i]] = map[s[i]][0] = 0;
}
for(i = 0; i<D; i++)
scanf("%d",&e[i]);
Dijkstra();
for(i = 0; i<D; i++)
minn = min(minn,cast[e[i]]);
printf("%d\n",minn);
}
return 0;
}