欧几里得算法

两千多年前的欧几里得算法的目的是求两个非负整数的最大公约数


具体算法如下:

/**获取最大公约数的函数*/
public static  int gcd(int p, int q){
    if (q == 0){
        return p;
    }
    int r = p % q;
    return gcd(q,r);
}


可以这样理解:
A:如果p是那个比较大的数,那么r肯定是一个大于0小于q的数了

递归调用的时候形参p的实参就是q,相对于形参q的实参r来说,也是比较大的数,能继续使得第二个参数变小,不会出现堆栈溢出。

B:如果q是那个比较大的数,那么r,肯定是p的值了

那么第二次调用的时候形参p的实参就是q(较大的数)了,形参q的实参就是p了,重新回到A.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值