使用Anaconda配置Tensorflow/Pytorch环境

本文详细介绍了如何使用Anaconda快速安装和配置Pytorch与Tensorflow的环境,无需手动处理复杂的CUDA和cuDNN版本匹配。首先阐述了Driver、CUDA、cuDNN与AI框架的关系,然后通过Anaconda的环境管理,仅需安装显卡驱动和Anaconda,就能通过简单的命令完成Pytorch和Tensorflow的安装。同时,文章还指导了如何在环境中安装Jupyter Notebook,并将其与新建环境关联,方便开发。
摘要由CSDN通过智能技术生成

安装Pytorch/Tensorflow不可避免的需要考虑显卡驱动,CUDA,cuDNN与AI框架之间的配合问题,如何选择合适的版本经常让人摸不着头脑。本文首先简单介绍显卡驱动,CUDA,cuDNN是什么以及它们与AI框架之间的关系,然后在后面的章节中介绍如何使用Anacond简易地配置Pytorch和Tensorflow环境(只需安装显卡驱动,而无需安装CUDA和cuDNN),并在文章最后介绍了如何配置Jupyter Notebook。

1. Driver/CUDA/cuDNN/Tensorflow/Pytorch之间的关系

  • GPU Driver: 显卡驱动就是用于驱动显卡的程序,它和操作系统是最接近显卡硬件的一层软件,显卡驱动使得操作系统能够更好的控制显卡,驱动其完成相关任务
  • CUDA: CUDA的全称为Compute Unified Device Architecture,是NIVIDA推出的通用并行计算架构。通过CUDA,可以更好的利用GPU进行并行计算。
  • cuDNN: cuDNN全称是NVIDIA CUDA深度神经网络库,它提供了高度优化的卷积,池化和激活等神经网络单元,深度学习框架可以用其加速相关运算。
    在这里插入图片描述

显卡驱动,CUDA,cuDNN和AI框架之间的关系如上图所示,AI框架利用cuDNN和CUDA实现高性能计算,驱动则为更上层的应用提供了操作显卡的接口。

安装Pytorch和Tensorflow前,一般都会要求先安装合适版本的显卡驱动,CUDA和cuDNN,这三者之间有着版本对应关系。一般安装完显卡驱动后,使用nvidia-smi.exe程序即可确定对应的CUDA版本。如下图所示,笔者使用的显卡为GTX 1070,显卡驱动为496.13,对应的CUDA版本为11.5,确认完CUDA版本后,即可在cuDNN的下载页面选择对应的cuDNN版本下载。

在这里插入图片描述

显卡驱动,CUDA和cuDNN之间的对应关系通过上述步骤就非常容易确认,但是AI框架一直在不断更新,不同版本的AI框架需要配合不同版本的显卡驱动,CUDA和cuDNN,这之间的对应关系经常使得AI框架的安装不能顺利完成。

下面本文的重点来了!

本文将介绍使用Anaconda安装Pytorch和Tensorflow,仅需安装显卡驱动和Anaconda

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值