二分查找算法
关于二分查找算法的介绍
1.特点:最恶心,细节最多,最容易写出死循环的算法
2.学习上的侧重点:
(1)算法原理
不可以单纯地理解为只能在数组有序的情况下使用
(2)模板
不能够死记硬背,要理解了之后记忆
模板有以下三种:
1)朴素的二分模板
2)查找左边界的二分模板
3)查找右边界的二分模板
注意点: 第一个模板简单,但是具有局限性,第二个和第三个模板是万能的,相对于第一个模板,细节更多
二分查找
给定一个 n
个元素有序的(升序)整型数组 nums
和一个目标值 target
,写一个函数搜索 nums
中的 target
,如果目标值存在返回下标,否则返回 -1
。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
提示:
-
你可以假设
nums
中的所有元素是不重复的。 -
n
将在[1, 10000]
之间。 -
nums
的每个元素都将在[-9999, 9999]
之间。算法流程:
a. 定义 left , right 指针,分别指向数组的左右区间。
b. 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:
i. arr[mid] == target 说明正好找到,返回 mid 的值;
ii. arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍 去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid - 1 ,然后重复 2 过程;
iii. arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因 此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid + 1 ,然后重复 2 过程;
c. 当 left 与 right 错开时,说明整个区间都没有这个数,返回 -1 。
暴力解法就是把所有元素遍历一遍,与目标值进行比较大小,二分查找法的优势在于二段性。
二分查找的时间复杂度大大降低
代码如下:
class Solution {
public:
int search(vector<int>& nums, int target) {
int left=0,right=nums.size()-1;
while(left<=right)
{
int mid=left+(right-left)/2;//为了防止溢出
if(nums[mid]<target)
{
left=mid+1;
}
else if(nums[mid]>target)
{
right=mid-1;
}
else return mid;
}
return -1;
}
};
总结模板:
这里两个条件是可以等价的,奇数的情况还不能看出明显区别,偶数的情况就要看情况,有可能出现两种情况,但是影响并不大
在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组 nums
,和一个目标值 target
。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
是一个非递减数组-109 <= target <= 109
-
算法思路: ⽤的还是⼆分思想,就是根据数据的性质,在某种判断条件下将区间⼀分为⼆,然后舍去其中⼀个 区间,然后再另⼀个区间内查找;
⽅便叙述,⽤ x 表⽰该元素, resLeft 表⽰左边界, resRight 表⽰右边界。
寻找左边界思路:
• 寻找左边界: ◦ 我们注意到以左边界划分的两个区间的特点:
▪ 左边区间 [left, resLeft - 1] 都是⼩于 x 的;
▪ 右边区间(包括左边界) [resLeft, right] 都是⼤于等于 x 的;
• 因此,关于 mid 的落点,我们可以分为下⾯两种情况:
◦ 当我们的 mid 落在 [left, resLeft - 1] 区间的时候,也就是 arr[mid] < target 。说明 [left, mid] 都是可以舍去的,此时更新 left 到 mid + 1 的位置, 继续在 [mid + 1, right] 上寻找左边界;
◦ 当 mid 落在 [resLeft, right] 的区间的时候,也就是 arr[mid] >= target 。 说明 [mid + 1, right] (因为 mid 可能是最终结果,不能舍去)是可以舍去的,此时 更新 right 到 mid 的位置,继续在 [left, mid] 上寻找左边界;
• 由此,就可以通过⼆分,来快速寻找左边界; 注意:这⾥找中间元素需要向下取整。 因为后续移动左右指针的时候: 、
• 左指针: left = mid + 1 ,是会向后移动的,因此区间是会缩⼩的;
• 右指针: right = mid ,可能会原地踏步(⽐如:如果向上取整的话,如果剩下 1,2 两个元 素, left == 1 , right == 2 , mid == 2 。更新区间之后, left,right,mid 的 值没有改变,就会陷⼊死循环)。 因此⼀定要注意,当 right = mid 的时候,要向下取整。
寻找右边界思路:
• 寻右左边界:
◦ ⽤ resRight 表⽰右边界;
◦ 我们注意到右边界的特点:
▪ 左边区间 (包括右边界) [left, resRight] 都是⼩于等于 x 的;
▪ 右边区间 [resRight+ 1, right] 都是⼤于 x 的;
• 因此,关于 mid 的落点,我们可以分为下⾯两种情况:
◦ 当我们的 mid 落在 [left, resRight] 区间的时候,说明 [left, mid - 1] ( mid 不可以舍去,因为有可能是最终结果) 都是可以舍去的,此时更新 left 到 mid 的位置;
◦ 当 mid 落在 [resRight+ 1, right] 的区间的时候,说明 [mid, right] 内的元素 是可以舍去的,此时更新 right 到 mid - 1 的位置;
• 由此,就可以通过⼆分,来快速寻找右边界; 注意:这⾥找中间元素需要向上取整。 因为后续移动左右指针的时候:
• 左指针: left = mid ,可能会原地踏步(⽐如:如果向下取整的话,如果剩下 1,2 两个元 素, left == 1, right == 2,mid == 1 。更新区间之后, left,right,mid 的值 没有改变,就会陷⼊死循环)。
• 右指针: right = mid - 1 ,是会向前移动的,因此区间是会缩⼩的; 因此⼀定要注意,当 right = mid 的时候,要向下取整。
⼆分查找算法总结:
请⼤家⼀定不要觉得背下模板就能解决所有⼆分问题。
⼆分问题最重要的就是要分析题意,然后确定 要搜索的区间,根据分析问题来写出⼆分查找算法的代码。
要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七⼋糟的题解
要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七⼋糟的题解
要分析题意,确定搜索区间,不要死记模板,不要看左闭右开什么乱七⼋糟的题解
重要的事情说三遍。
模板记忆技巧:
-
关于什么时候⽤三段式,还是⼆段式中的某⼀个,⼀定不要强⾏去⽤,⽽是通过具体的问题分析情 况,根据查找区间的变化确定指针的转移过程,从⽽选择⼀个模板。
-
当选择两段式的模板时:
◦ 在求 mid 的时候,只有 right - 1 的情况下,才会向上取整(也就是 +1 取中间数)
-
代码如下:
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
//处理边界情况
if(nums.size()==0) return{-1,-1};
int begin=0;
//二分处理左端点情况
int left=0,right=nums.size()-1;
while(left<right)
{
int mid=left+(right-left)/2;
if(nums[mid]<target) left=mid+1;
else right=mid;
}
//处理结果
if(nums[left]!=target) return {-1,-1};
else begin=left;//标记左端点
//二分右端点区间
left=0,right=nums.size()-1;
while(left<right)
{
int mid=left+(right-left+1)/2;
if(nums[mid]<=target) left=mid;
else right=mid-1;
}
return {begin,right};
}
};