MySQL索引底层数据结构

本文详细解析了MySQL中不同类型的索引,如B+Tree的优势和局限性,以及Hash表的使用场景。重点介绍了InnoDB的聚集索引和为何主键选择对性能的影响。特别提到了MyISAM与InnoDB的存储区别:MyISAM的非聚集索引与InnoDB的聚集索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

索引是帮助MySQL高效获取数据排好序数据结构

索引数据结构

  1. 二叉树(不适用)
    弊端:对于线性增长的数据依然要走全表扫描。
    在这里插入图片描述

  2. 红黑树(二叉平衡树)(不适用)

    弊端:对于数据量大的情况,树的高度(例n=20)就会很高,此时如果我们需要查询的索引数据位于叶子节点,至少要经过20次查找(磁盘io),所以性能难以提升。
    另外,红黑树会自平衡(自旋),也会对性能有一定影响。

在这里插入图片描述

  1. Hash表 <MySQL使用的索引结构>
    通过对索引节点的hash运算,得出索引对应的数据的磁盘文件地址指针,然后根据地址指针直接获取数据。
    弊端:
    ——不支持范围查询;
    —— 存在hash冲突。
    应用场景即为数据量很大,但是范围查询又很少,同时对性能要求很高等可以使用。

  2. B-tree (不适用)
    在这里插入图片描述

  3. B+Tree (B-tree的变种)<MySQL使用的索引结构>
    在这里插入图片描述

不同引擎索引实现

MyISAM:

MyISAM索引文件和数据文件是分离的(非聚集
在这里插入图片描述

InnoDB

  • 索引实现(聚集)
    • 表数据文件本身就是按 B+Tree 组织的一个索引结构文件
    • 聚集索引-叶子节点包含了完整的数据记录
    • 为什么InnoD 表必须有主键,并且推荐使用整型自增主键——因为表数据本身就是B+tree的结构文件,所以一定要主键,不设置的话MySQL会自动建一个主键,自增主键便于维护索引,有助于范围查询的性能提升,同时占用磁盘空间较少。
    • 为什么非主键索引结构叶子节点存储的是主键值?()

在这里插入图片描述

总结:
MyISAM —— 叶子节点存放的是数据所在行的磁盘地址指针,即索引文件和数据文件是分离的(非聚集)

InnoDB —— 叶子节点包含了完整的数据记录(聚集)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值