1 写作规范
1.1 写作为什么重要
科学研究是一个创新、重组和更新知识,以及创造性地将知识应用于新领域的过程。
新颖性:创新 > 更新 > 应用于新的领域
重新组织:综述论文
写作能力对于研究工作来说显然很重要。
写作能力对于其他工作来说也是必不可少的。
提出新项目的能力
安排研究计划的能力
验证结果的能力
一个模仿你职业发展的小项目
1.2 导致剽窃的原因(引用不当也会导致)
写作技巧不自信
对写作不切实际的期望
词穷的、粗心的或被动地记笔记
引用困难
引文在编辑过程中完成
释义就是重写
等等。
1.3 引用规范
引用不是介绍别人的工作,而是更加清晰介绍自己的工作。
合适的引用:
缺少相关的参考资料
有意避免比较
倾向于(假装)有创新
避免虚假引用:太多不恰当的引用
引用同事的无关论文
引用一些你不熟悉的论文
不相关论文的自引
间接引用以前的工作
2 Writting Tips
2.1 各种工具的使用
Overleaf:多人协作在线平台
Git and TortoiseGit: 版本控制
Grammarly: 语法检测
Latex: 格式排版
2.2 Figure很重要
避免boring figure ,一些不重要的图占据大篇幅
图片中自己大小应该看的清
2.3 写作应该指明主语和宾语,避免无效描述
2.4 如何避免审稿人给出limited novelty
如下图所示,图片尽量多展示创新性,而不是看着就跟别人很像。
2.5 更好的方法去展示实验结果
2.6 适当讨论论文的缺点,因为没有完美的方法
源代码将在论文接收后发布
讨论局限性
关于什么可能(不可能)发生的理论证明
分析计算/内存成本
尽可能使你的想法清晰
避免定义许多不必要的术语
公平(至少在形式上)
验证每一个设计决策为(尽量保持简单)
3 Getting Ready
创新点很重要:
新的问题新的解决方法
这些问题可以是从另一个角度出发,绕过一些普遍的问题,因为那些问题,我们的方法很难跟其他先进方法同样有竞争力。
现存的方法新的解决方法
这些idea,方法在速度,精度,内存方面有提升。
组合idea
组合这些idea可以去完成一个预定的问题。
注意:不同期刊不同会议会有不同的写作要求。
4 The paper I
4.1 论文整体结构
Header:
标题
作者列表
通讯作者的联系方式和地址
摘要
关键字
Body:
简介
相关工作
算法或方法或理论结果
实验或证明
结论(包括未来可能的工作)
4.2 写作计划
快速写出初稿,然后修改。
了解论文前面已经研究过的内容。
知道还有什么需要解释。
避免写了太多细节,然后发现没有空间了。
写作迫使你重新思考实验:重新做实验或修改算法。
涵盖所有需要说明的内容,并且要足够详细并且在修改过程中对其进行润色和缩短。
原则:将重要的,新的东西,分成几个模块,逐个论述,否则看论文的人无法同时接受这么多。
4.3 摘要
摘要可以作为独立的文档,论文最后一个写。
确定主题并指出其重要性。
简要说明观点、方法、理论、发现。
总结实验证明或理论证明。
从论文中可以得出什么结论。
4.4 简介
解释问题
问题陈述
背景
假设
发现
方法说明&贡献
4.5 相关工作
相关工作讨论目的:
表现出你对该领域很熟悉:
之前做了什么。
目前最先进的技术是什么。
让审稿人对你声称的创新点充满信心
仔细选择要引用的论文,比如以下论文:
开始某一特定研究方向的。
取得重大优势的。
以当前最好的想法/结果结尾的。
未能讨论密切相关的工作可能会被拒稿。
检查是否引用了正确的论文(谷歌学者)
高被引论文很可能是有影响力的比较重要的论文。
引用率低的论文可能也很重要,如果它们是最近才发表的或者它们讨论的是一个非常专业的话题。
证明你的工作在某种程度上推动了该领域的发展。
你可能是第一个解决新问题的人。
与众不同是不够的,你的工作必须在某些方面做得更好。
用批判性的分析解释之前的主要结果,指出它的优点是什么。
讨论缺点或限制。
你的工作是一种改进,或者解决了一个不同但相关的问题。
你不需要在所有方面都有所提高。
4.6 Overview
可以在前言后面就进行叙述,也可以单开一个章节。
1、解释各个章节的主旨及联系。
2、本文工作与现有方法的主要区别。
3、做出假设并介绍合理性。
4.7 Detail Sections
写清楚实验过程让别人可以足够复刻。
介绍那些即使自己很清楚但读者不一定清楚的细节。
解释你为什么这么做。
先用通俗的话描述,再介绍细节。
读者不一定很了解背景,所以也需要详细介绍。
每个章节记得结尾总结一下,防止读者忘记。
5 The paper II
5.1 理论
理论要避免只用公式,还需要通俗的文字论述。
定理或结果本身的形式陈述。
描述结果如何适用于整个解决方案。
由结果处理的子问题目标。
结果的证明或其他推理。
5.2 算法
算法可以使得后续的方法更加可靠。
介绍算法是要有合理的逻辑,输入→输出。
避免一次性过长的描述。
介绍算法的各个子过程。
对于算法的解释,应该用通俗的自然语言,而不是对代码的重复。
对于每一个参数应有介绍。
5.3 实验
介绍做了什么(对实验的客观描述)。
每一步都应有各自的目的。
实验过程中,用一些定量的描述。
客观的实验结果很重要。
如实的写出自己方法的优缺点,如何时效果好何时效果不好。
任何结论都需要有具体实验的支撑。
5.4 结论
任何方法都不是完美的,需要客观讨论,同时也要清楚地说明你工作的局限性。
5.5 致谢
如果可能的话,提供引文、代码/数据的链接。
如果你想在你的论文中复制他人的著作论文,仅仅在致谢中提及是不够的。
你必须得到所有者的书面许可,尽管简短的书面材料摘要可能不需要。
5.6 参考文献
所有的参考文献在文中必须有说明和引用。
有利于读者更好的了解文章相关知识。
学术论文应该只包含参考文献,而不是一般的参考书目。
参考文献是你在论文中专门讨论和交叉引用的项目。
5.7 附录
使用附录的主要目的是提供补充材料,它太冗长了,会打断读者的理解思路。
补充信息,比如文中较长的证明等。
6 Writting Styles
清楚文章的阅读群体,选择合适的论文风格。
按照读者不懂该领域来叙述。
在前文对背景知识(相关理论、公式)有一定的叙述。
对现有方法的一些批判以突出论文方法的有用性。
不要说自己要去做什么,而是说自己的目的及为什么要这么做。
通过与其他方法比较表现出自己方法的有效性。
需要精确的描述而不是笼统的介绍。
所有描述都要做到尽量简洁且易懂。
表达方式符合逻辑。
7 Logical Writting
7.1 图表
图表的使用必须有明确的意义。
保证图表中每个坐标轴数轴都有明确的定义。
图表的标题应当避免过长,越短越好。
角注等也应该尽量短,防止打断读者思绪。
7.2 图
每个图都要有明确的说明。
图避免过小,插入文本中需要能看清。
图表里的术语和表示符号需要和正文一致。
图表中多用不同颜色的线条进行区分。
图中表示相同变量的字体需要和正文一致。
图的位置应在相应描述的正文的附近,且最好放正文上方。
7.3 表
值得一提的是,上述对于图的叙述对表同样适用。
表的标号与图独立,单独标号。
表中的每行每列都需具体的描述。
表中的单位需要进行描述。
数学符号的表达根据标准格式即可,不需创新。
保证每个符号在全文中仅有一个含义。
7.4 单位和公式
使用国际标准单位。
数学符号后面不要加标点符号,除非在句尾。
所有公式都需要编号,以方便读者阅读。