使用python中的pymsql完成如下:表结构与数据创建 1. 建立 `users` 表和 `orders` 表。 `users` 表有用户ID、用户名、年龄字段,(id,name,age) `orders` 表有订单ID、订单日期、订单金额,用户id字段。(id,order_date,amount,user_id) 2 两表的id作为主键,`orders` 表用户id为users的外键 3 插入数据 `users` (1, '张三', 18), (2, '李四', 20), (3, '王五', 22), (4, '赵六', 25), (5, '钱七', 28); `orders` (1, '2021-09-01', 500, 1), (2, '2021-09-02', 1000, 2), (3, '2021-09-03', 600, 3), (4, '2021-09-04', 800, 4), (5, '2021-09-05', 1500, 5), (6, '2021-09-06', 1200, 3), (7, '2021-09-07', 2000, 1), (8, '2021-09-08', 300, 2), (9, '2021-09-09', 700, 5), (10, '2021-09-10', 900, 4); 查询语句 1. 查询订单总金额 2. 查询所有用户的平均年龄,并将结果四舍五入保留两位小数。 3. 查询订单总数最多的用户的姓名和订单总数。 4. 查询所有不重复的年龄。 5. 查询订单日期在2021年9月1日至9月4日之间的订单总金额。 6. 查询年龄不大于25岁的用户的订单数量,并按照降序排序。 7. 查询订单总金额排名前3的用户的姓名和订单总金额。 8. 查询订单总金额最大的用户的姓名和订单总金额。 9. 查询订单总金额最小的用户的姓名和订单总金额。 10. 查询所有名字中含有“李”的用户,按照名字升序排序。 11. 查询所有年龄大于20岁的用户,按照年龄降序排序,并只显示前5条记录。 12. 查询每个用户的订单数量和订单总金额,并按照总金额降序排序。
最新发布