22牛客多校二 - Link with Monotonic Subsequence(构造)

该博客讨论了一种寻找数列[1,2,...,n]排列的方法,目标是最小化最长上升子序列(lis)和最长下降子序列(lds)的最大值。通过实验发现,将数列分成块并倒序放置每个块内的元素可以达到目标,例如789456123或321654987。代码示例展示了如何实现这一策略,输出满足条件的排列。
摘要由CSDN通过智能技术生成

https://ac.nowcoder.com/acm/contest/33187/G


题意
找到数列 [1, 2, …, n] 的一种排列,使得 m a x ( l i s ( p ) , l d s ( p ) ) max(lis(p),lds(p)) max(lis(p),lds(p)) 最小。
l i s ( p ) ,   l d s ( p ) lis(p),\ lds(p) lis(p), lds(p) 分别指 最长上升子序列 和 最长下降子序列的长度。

1 ≤ n ≤ 1 0 6 1≤n≤10^6 1n106

思路
打表发现,可以将所有数分成 ⌈ n ⌉ \left\lceil \sqrt n \right\rceil n 块,把所有块倒着放,每一块中的数递增,如:789 456 123,或者这样 321 654 987

m a x ( l i s ( p ) , l d s ( p ) ) max(lis(p),lds(p)) max(lis(p),lds(p)) ⌈ n ⌉ \left\lceil \sqrt n \right\rceil n

Code

#include<bits/stdc++.h>
using namespace std;

#define Ios ios::sync_with_stdio(false),cin.tie(0)
#define endl '\n'
map<int,int> mp;

const int N = 200010, mod = 1e9+7;
int T, n, m;
int a[N];

signed main(){
	Ios;
	
	for(int i=1;i<=1000;i++) mp[i*i] = i;
	
	cin >> T;
	while(T--)
	{
		cin >> n;
		
		int x;
		if(mp.count(n)) x = mp[n];
		else x = sqrt(n) + 1;
		
		int cnt = 0;
		for(int i=1;i<=n;i++)
		{
			cnt++;
			if(cnt == x){
				for(int j=i;j>i-x;j--) cout << j << ' ';
				cnt = 0;
			}
		}
		if(cnt){
			for(int j=n;j>n-cnt;j--) cout << j << ' ';
		}
		cout << endl;
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值