机器学习——支持向量机SVM

逻辑回归的改进
逻辑回归公式:
在这里插入图片描述
在这里插入图片描述
当y = 1时,我们希望
在这里插入图片描述
在这里插入图片描述
当y = 0时,我们希望
在这里插入图片描述
在这里插入图片描述
逻辑回归的损失函数:
在这里插入图片描述
如果y = 1时,
在这里插入图片描述
如果y = 0时,
在这里插入图片描述
这样我们就得到了下面公式:
逻辑回归的损失函数:
在这里插入图片描述
支持向量机的损失函数:
在这里插入图片描述

SVM决策边界:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
SVM的核函数:用来使SVM能够处理非线性分类
核函数和相似度:
在这里插入图片描述
下面通过代码实现支持向量机处理数据集,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline

from sklearn.svm import SVC

# dataset.make_moons生成半环形图
X, y = datasets.make_moons(noise=0.15, random_state=666)
# print(X, y)
# scatter绘制散点图
# 绘制蓝色点
plt.scatter(X[y==0, 0], X[y==0, 1])
# 绘制红色点
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()


def plot_decision_boundary(model, axis):
    # 生成网格点坐标矩阵
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1] - axis[0]) * 100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3] - axis[2]) * 100)).reshape(-1, 1)
    )
    # ravel将多为数组转化为一维数字
    X_new = np.c_[x0.ravel(), x1.ravel()]

    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])

    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)


def PolynomialSVC(degree, C=1.0):
    # pipline的作用是将数据处理和模型拟合结合在一起,减少代码量
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),  # 多项式回归
        ('std_scaler', StandardScaler()),  # 标准化的类
        ('linearSVC', LinearSVC(C=C))    # 线性SVM
    ])

poly_svc = PolynomialSVC(degree=3)
poly_svc.fit(X, y)

plot_decision_boundary(poly_svc, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()

# 当算法SVC()的参数 kernel='poly'时,SVC()能直接打到一种多项式特征的效果;
# 使用 SVC() 前,也需要对数据进行标准化处理
def PolynomialKernelSVC(degree, C=1.0):
    return Pipeline([
        ('std_scaler', StandardScaler()),
        ('kernelSVC', SVC(kernel='poly', degree=degree, C=C))
    ])

poly_kernel_svc = PolynomialKernelSVC(degree=3)
poly_kernel_svc.fit(X, y)

plot_decision_boundary(poly_kernel_svc, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()

输出结果图像如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以通过改变SVM的核函数来改变分类的结果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值