背包是dp中一类重要而特殊的模型,下面我们来学习一下其中的几个典型模型。
一、0/1背包
0 / 1 0/1 0/1背包问题的模型如下:
给定N个物品,其中第 i i i个物品的体积为 V i V_{i} Vi,价值为 W i W_{i} Wi。有一个容积为M的背包,要求选择一些物品放入背包,使得物品总体积不超过M的前提下,物品的价值总和最大。
对于 0 / 1 0/1 0/1背包问题,我们用 f ( i , j ) f(i,j) f(i,j)表示从前 i i i个物品中选出了总体积为 j j j的物品放入背包,物品的最大价值和。容易得到其状态转移方程:
f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − v i ) + w i ) f(i,j)=max(f(i-1,j),f(i-1,j-v_{i})+w_{i}) f(i,j)=max(f(i−1,j),f(i−1,j−vi)+wi)
下面我们来看两道例题。
1、洛谷 P1048 [NOIP2005 普及组] 采药
题目链接:https://www.luogu.com.cn/problem/P1048
题目思路:emmm其实这是一道非常裸的0/1背包问题,就用上面的状态转移方程即可,代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1001;
int t,m;
int v[maxn],w[maxn],dp[maxn];
int main()
{
cin>>t>>m;
for(int i=1;i<=m;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=m;i++)
for(int j=t;j>=v[i];j--)
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
cout<<dp[t]<<endl;
return 0;
}
2、AcWing 278. 数字组合
题目链接:https://www.acwing.com/problem/content/280/
题目思路:这也是一道非常裸的0/1背包问题,首先我们用二维数组来表示状态转移方程:
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
dp[i][j]=dp[i-1][j];
if(j>=a[i])
dp[i][j]+=dp[i-1][j-a[i]];
}
}
在上述状态转移方程中只涉及到了 i − 1 和 j − a [ i ] i-1和j-a[i] i−1和j−a[i],由此我们可以对其使用滚动数组进行优化,得 d p [ j ] + = d p [ j − a [ i ] ] dp[j]+=dp[j-a[i]] dp[j]+=dp[j−a[i]],代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+1;
int a[maxn],dp[maxn];
int n,m;
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>a[i];
dp[0]=1;
for(int i=1;i<=n;i++)
for(int j=m;j>=a[i];j--)
dp[j]+=dp[j-a[i]];
cout<<dp[m]<<endl;
return 0;
}
二、完全背包
完全背包问题的模型如下:
给定 N N N种物品,其中第 i i i种物品的体积为 V i V_{i} Vi,价值为