[2020.10.30NOIP模拟赛]小鱼吃大鱼【RMQ】

该篇博客介绍了如何通过动态规划解决一个关于n个数中寻找最优对(i, j),使得ai与aj的百分比最大化的数学问题。通过最小值查询(RMQ)技巧,博主展示了高效的O(n log n)时间复杂度解决方案。代码展示了如何利用二分查找和RMQ构建最大值与最小值差的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正题


题目大意

n n n个数,求一对 ( i , j ) (i,j) (i,j)要求最大化 m a x { a i , a j } % m i n { a i , a j } max\{a_i,a_j\}\% min\{a_i,a_j\} max{ai,aj}%min{ai,aj}


解题思路

我们考虑枚举小的那一个 i i i,显然在 k i ∼ k ( i + 1 ) − 1 ki\sim k(i+1)-1 kik(i+1)1这段范围都是要减去一个 k i ki ki R M Q RMQ RMQ查询最大值即可。

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)


c o d e code code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
const int N=1e6;
int read() {
	int x=0,f=1; char c=getchar();
	while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
	while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
	return x*f;
}
int n,ans,lg[N+10],f[N+10][21];
int get_min(int l,int r){
	if(r>N)r=N;int z=lg[r-l+1];
	return max(f[l][z],f[r-(1<<z)+1][z]);
}
int main()
{
//	freopen("data.txt","r",stdin);
	n=read();
	for(int i=2;i<=N;i++)lg[i]=lg[i>>1]+1;
	for(int i=1;i<=n;i++){
		int x=read();
		f[x][0]=x;
	}
	for(int j=1;j<=20;j++)
		for(int i=1;i+(1<<j)-1<=N;i++)
			f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
	for(int i=1;i<=N;i++)
		if(f[i][0]){
			for(int j=i;j<=N;j+=i)
				ans=max(ans,get_min(j,j+i-1)-j);
		}
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值