P3200-[HNOI2009]有趣的数列【卡特兰数】

博客主要解析了一道洛谷上的编程题目,涉及到序列填充和卡特兰数的概念。题目要求构造一个特定的2n阶排列,其中奇数位置和偶数位置分别递增,并且偶数位置的数值始终大于相邻的奇数位置。解题策略转换为计算第n个卡特兰数,并通过质因数分解处理除数,以达到O(nlogn)的时间复杂度。代码实现中包含了质数判断、质因数分解和计数数组等算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正题

题目链接:https://www.luogu.com.cn/problem/P3200


题目大意

求一个长度为 2 ∗ n 2*n 2n的排列要求

  1. 奇数位和偶数位分别递增
  2. 相邻的偶数位大于奇数位

解题思路

可以看做是一个 2 ∗ n 2*n 2n的序列按顺序填进奇数和偶数位,然后因为第二个要求所以奇数位在任何时候都得比偶数位的要多,就转换为了求第 n n n个卡特兰数了。

然后因为 p p p不是质数所以要质因数分解来除数,时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)


c o d e code code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e6+10;
int n,p,tot,pri[N],cnt[N];
bool v[N];
int main()
{
	scanf("%d%d",&n,&p);
	for(int i=2;i<=2*n;i++){
		if(!v[i])pri[++tot]=i;
		for(int j=1;j<=tot&&i*pri[j]<=n;j++){
			v[i*pri[j]]=1;
			if(i%pri[j]==0)break;
		}
	}
	for(int i=n+2;i<=2*n;i++){
		int x=i;
		for(int j=1;pri[j]*pri[j]<=x&&j<=tot;j++)
			while(x%pri[j]==0)x/=pri[j],cnt[j]++;
		if(x!=1)cnt[lower_bound(pri+1,pri+1+tot,x)-pri]++;
	}
	for(int i=1;i<=n;i++){
		int x=i;
		for(int j=1;pri[j]*pri[j]<=x&&j<=tot;j++)
			while(x%pri[j]==0)x/=pri[j],cnt[j]--;
		if(x!=1)cnt[lower_bound(pri+1,pri+1+tot,x)-pri]--;
	}
	long long ans=1;
	for(int i=1;i<=tot;i++)
		while(cnt[i])ans=ans*pri[i]%p,cnt[i]--;
	printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值