正题
题目链接:https://www.luogu.com.cn/problem/CF1556F
题目大意
n n n个点的一张竞赛图,每个点有一个权值 a i a_i ai, ( i , j ) (i,j) (i,j)之间的边 i i i连 j j j的概率是 a i a i + a j \frac{a_i}{a_i+a_j} ai+ajai,否则 j j j连 i i i。
现在期望有多少个点能走到全图的任意一个点。
1 ≤ n ≤ 14 , 1 ≤ a i ≤ 1 0 6 1\leq n\leq 14,1\leq a_i\leq 10^6 1≤n≤14,1≤ai≤106
解题思路
考虑状压 d p dp dp,首先枚举起点 p p p,设 f S f_{S} fS表示目前只考虑了点集 S S S且 p p p都能到达。
那么对于点集
S
S
S是任意一张图的概率是
1
1
1,然后考虑枚举一个
p
p
p能到达的集合
T
T
T之后其他点
p
p
p都不能到达,为了方便表示下面记
g
S
,
T
g_{S,T}
gS,T表示点集
S
S
S和
T
T
T之间的边都是
S
S
S指向
T
T
T的概率那么有
1
=
∑
T
⊆
S
f
T
×
g
S
−
T
,
T
1=\sum_{T\subseteq S}f_T\times g_{S-T,T}
1=T⊆S∑fT×gS−T,T
⇒
f
S
=
1
−
∑
T
⊂
S
f
T
×
g
S
−
T
,
T
\Rightarrow f_S=1-\sum_{T\subset S}f_T\times g_{S-T,T}
⇒fS=1−T⊂S∑fT×gS−T,T
考虑如何预处理 g S , T g_{S,T} gS,T,不难发现因为 S ∩ T = ∅ S\cap T=\varnothing S∩T=∅所以这个状态数是 3 n 3^n 3n的我们可以用三进制状压,不过得先预处理 r p , S r_{p,S} rp,S表示 p p p与集合 S S S之间的边都是 p p p连向 S S S的概率。
时间复杂度: O ( 3 n n + 2 n n 2 ) O(3^nn+2^nn^2) O(3nn+2nn2)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=14,M=2e6+10,P=1e9+7;
ll n,ans,inv[M],pw[N+1],a[N],r[N][1<<N],tr[1<<N],f[1<<N],g[4782969];
signed main()
{
inv[1]=1;
for(ll i=2;i<M;i++)inv[i]=P-(P/i)*inv[P%i]%P;
scanf("%lld",&n);
for(ll i=0;i<n;i++)
scanf("%lld",&a[i]);
ll MS=(1<<n);
for(ll p=0;p<n;p++){
r[p][0]=1;
for(ll s=0;s<MS;s++){
if((s>>p)&1)continue;
for(ll i=0;i<n;i++)
if((s>>i)&1){r[p][s]=r[p][s^(1<<i)]*a[p]%P*inv[a[p]+a[i]]%P;break;}
}
}
pw[0]=1;for(ll i=1;i<=n;i++)pw[i]=pw[i-1]*3;
for(ll s=1;s<MS;s++)
for(ll i=0;i<n;i++)
if((s>>i)&1)tr[s]=tr[s^(1<<i)]+pw[i];
for(ll s=0;s<pw[n];s++)g[s]=1;
for(ll s=0;s<MS;s++)
for(ll i=0;i<n;i++){
if(!((s>>i)&1))continue;
for(ll t=s;t;t=(t-1)&s){
if((t>>i)&1)continue;
(g[tr[s]+tr[t]]*=r[i][t])%=P;
}
}
for(ll p=0;p<n;p++){
memset(f,0,sizeof(f));
for(ll s=0;s<MS;s++){
if(!((s>>p)&1))continue;f[s]=1;
for(ll t=(s-1)&s;t;t=(t-1)&s){
if(!((t>>p)&1))continue;
(f[s]+=P-f[t]*g[tr[s]+tr[t]]%P)%=P;
}
}
(ans+=f[MS-1])%=P;
}
printf("%lld\n",ans);
return 0;
}