正题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=7207
题目大意
一个序列 a a a,和它相同的序列当且仅当能通过以下操作实现相同:
- 将 a 1 a_1 a1丢到 a n a_n an,其余的向前移动一位。
- 令所有 a i = ( a i + 1 ) % m a_i=(a_i+1)\%m ai=(ai+1)%m
对于 n ∈ [ 1 , N ] n\in [1,N] n∈[1,N],求有多少个不同的序列。
1 ≤ T ≤ 100 , 1 ≤ N , m ≤ 1 0 5 , ∑ N ≤ 1 0 6 1\leq T\leq 100,1\leq N,m\leq 10^5,\sum N\leq 10^6 1≤T≤100,1≤N,m≤105,∑N≤106
解题思路
根据 burnside \text{burnside} burnside引理,我们要找所有置换的不动点数量和。
置换总共有 n × m n\times m n×m种,假设一种为循环位移了 x x x步,且所有数字加上了 y y y。
那么我们有 a i ≡ a ( i + x ) % n + y ( m o d m ) a_i\equiv a_{(i+x)\%n}+y\pmod m ai≡a(i+x)%n+y(modm),从一个数开始一直加 x x x模 n n n,我们知道会产生 gcd ( n , x ) \gcd(n,x) gcd(n,x)个环,对于每个环来说总共加了 n gcd ( n , x ) \frac{n}{\gcd(n,x)} gcd(n,x)n次 y y y,最终又走回了起点。
也就是对于这个 y y y来说合法的条件当且仅当 y × n gcd ( n , x ) ≡ 1 ( m o d m ) y\times \frac{n}{\gcd(n,x)}\equiv 1\pmod m y×gcd(n,x)n≡1(modm),不难得到合法的 y y y的数量就是 gcd ( m , n gcd ( n , x ) ) \gcd(m,\frac{n}{\gcd(n,x)}) gcd(m,gcd(n,x)n)。
所以答案就是
1
n
m
∑
i
=
0
n
−
1
gcd
(
m
,
n
gcd
(
n
,
x
)
)
gcd
(
n
,
i
)
\frac{1}{nm}\sum_{i=0}^{n-1}\gcd(m,\frac{n}{\gcd(n,x)})^{\gcd(n,i)}
nm1i=0∑n−1gcd(m,gcd(n,x)n)gcd(n,i)
1
n
m
∑
d
∣
n
n
φ
(
n
d
)
gcd
(
m
,
n
d
)
d
\frac{1}{nm}\sum_{d|n}^n\varphi(\frac{n}{d})\gcd(m,\frac{n}{d})^{d}
nm1d∣n∑nφ(dn)gcd(m,dn)d
时间复杂度: O ( n log n ) O(n\log n) O(nlogn)
code
#pragma GCC optimize(2)
%:pragma GCC optimize(3)
%:pragma GCC optimize("Ofast")
%:pragma GCC optimize("inline")
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10,P=998244353;
ll T,n,m,cnt,pri[N],phi[N],ans[N];
bool v[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll gcd(ll x,ll y)
{return y?gcd(y,x%y):x;}
void Prime(){
phi[1]=1;
for(ll i=2;i<N;i++){
if(!v[i])phi[i]=i-1,pri[++cnt]=i;
for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0){
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
return;
}
signed main()
{
Prime();
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&m);
ll now=1,z=1;
for(ll i=1;i<=n;i++){
z=z*m%P;
for(ll j=i;j<=n;j+=i)
(ans[j]+=z*phi[j/i]%P*gcd(m,j/i)%P)%=P;
}
ll inv=power(m,P-2)%P;
for(ll i=1;i<=n;i++){
ans[i]=ans[i]*power(i,P-2)%P*inv%P;
printf("%lld%c",ans[i],(i==n)?'\n':' ');
ans[i]=0;
}
}
return 0;
}