hdu7207-Find different【burnside引理】

正题

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=7207


题目大意

一个序列 a a a,和它相同的序列当且仅当能通过以下操作实现相同:

  • a 1 a_1 a1丢到 a n a_n an,其余的向前移动一位。
  • 令所有 a i = ( a i + 1 ) % m a_i=(a_i+1)\%m ai=(ai+1)%m

对于 n ∈ [ 1 , N ] n\in [1,N] n[1,N],求有多少个不同的序列。

1 ≤ T ≤ 100 , 1 ≤ N , m ≤ 1 0 5 , ∑ N ≤ 1 0 6 1\leq T\leq 100,1\leq N,m\leq 10^5,\sum N\leq 10^6 1T100,1N,m105,N106


解题思路

根据 burnside \text{burnside} burnside引理,我们要找所有置换的不动点数量和。

置换总共有 n × m n\times m n×m种,假设一种为循环位移了 x x x步,且所有数字加上了 y y y

那么我们有 a i ≡ a ( i + x ) % n + y ( m o d m ) a_i\equiv a_{(i+x)\%n}+y\pmod m aia(i+x)%n+y(modm),从一个数开始一直加 x x x n n n,我们知道会产生 gcd ⁡ ( n , x ) \gcd(n,x) gcd(n,x)个环,对于每个环来说总共加了 n gcd ⁡ ( n , x ) \frac{n}{\gcd(n,x)} gcd(n,x)n y y y,最终又走回了起点。

也就是对于这个 y y y来说合法的条件当且仅当 y × n gcd ⁡ ( n , x ) ≡ 1 ( m o d m ) y\times \frac{n}{\gcd(n,x)}\equiv 1\pmod m y×gcd(n,x)n1(modm),不难得到合法的 y y y的数量就是 gcd ⁡ ( m , n gcd ⁡ ( n , x ) ) \gcd(m,\frac{n}{\gcd(n,x)}) gcd(m,gcd(n,x)n)

所以答案就是
1 n m ∑ i = 0 n − 1 gcd ⁡ ( m , n gcd ⁡ ( n , x ) ) gcd ⁡ ( n , i ) \frac{1}{nm}\sum_{i=0}^{n-1}\gcd(m,\frac{n}{\gcd(n,x)})^{\gcd(n,i)} nm1i=0n1gcd(m,gcd(n,x)n)gcd(n,i)
1 n m ∑ d ∣ n n φ ( n d ) gcd ⁡ ( m , n d ) d \frac{1}{nm}\sum_{d|n}^n\varphi(\frac{n}{d})\gcd(m,\frac{n}{d})^{d} nm1dnnφ(dn)gcd(m,dn)d

时间复杂度: O ( n log ⁡ n ) O(n\log n) O(nlogn)


code

#pragma GCC optimize(2)
%:pragma GCC optimize(3)
%:pragma GCC optimize("Ofast")
%:pragma GCC optimize("inline")
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10,P=998244353;
ll T,n,m,cnt,pri[N],phi[N],ans[N];
bool v[N];
ll power(ll x,ll b){
    ll ans=1;
    while(b){
        if(b&1)ans=ans*x%P;
        x=x*x%P;b>>=1;
    }
    return ans;
}
ll gcd(ll x,ll y)
{return y?gcd(y,x%y):x;}
void Prime(){
	phi[1]=1;
	for(ll i=2;i<N;i++){
		if(!v[i])phi[i]=i-1,pri[++cnt]=i;
		for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
			v[i*pri[j]]=1;
			if(i%pri[j]==0){
				phi[i*pri[j]]=phi[i]*pri[j];
				break;
			}
			phi[i*pri[j]]=phi[i]*phi[pri[j]];
		}
	}
	return;
}
signed main()
{
	Prime();
    scanf("%lld",&T);
    while(T--){
        scanf("%lld%lld",&n,&m);
        ll now=1,z=1;
        for(ll i=1;i<=n;i++){
        	z=z*m%P;
        	for(ll j=i;j<=n;j+=i)
        		(ans[j]+=z*phi[j/i]%P*gcd(m,j/i)%P)%=P; 
		}
		ll inv=power(m,P-2)%P;
		for(ll i=1;i<=n;i++){
			ans[i]=ans[i]*power(i,P-2)%P*inv%P;
			printf("%lld%c",ans[i],(i==n)?'\n':' ');
			ans[i]=0;
		}
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值