Leet Code OJ 1. Two Sum [Difficulty: Easy]

本文深入探讨了经典的“两数之和”问题,提供了三种不同的解决方案,包括暴力法、使用字典查找以及优化后的字典查找方法。通过对比不同方法的时间和空间复杂度,帮助读者理解算法效率的关键所在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.两数之和

出现频度为5

给定一个整数数组和一个目标值,找出数组中和为目标值的两个

你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。

Python代实现:

方法一:暴力法

最简单的思路,就是用两个for循环分别遍历数组中的数,找到两个数的和为target。

class Solution(object):
    def twoSum(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        """
        l = len(nums)
        for i in range(0,l):
            for j in range(0,l):
                if j != i:
                    if nums[i]+nums[j] == target:
                        return [i,j]

时间复杂度为O\left ( n^{2} \right ),两个for循环嵌套,执行一次外部的for循环需要执行n次内部for循环,耗费O\left ( n \right )时间,故一共为n*n

空间复杂度O\left ( 1 \right )

 

方法二:

先把值和序号存在字典中,这个字典中,key为数值,value为对应的序号0,1,2...,然后遍历字典,找target-nums[i]是否在字典中,注意两个数据的序号值不相等。

class Solution(object):
    def twoSum(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        """
        dic = {}
        l = len(nums)
        for i in range(l):
            dic[nums[i]] = i
        for i in range(l):
            if target-nums[i] in dic and i < dic[target-nums[i]]:
                return [i,dic[target-nums[i]]]

时间复杂度O\left ( n \right ),我们把包含有 n个元素的列表遍历两次,所以时间复杂度为O\left ( n \right )

空间复杂度O\left ( n \right ) ,所需的额外空间取决于字典中存储的元素数量,最多存储了 n 个元素。 

 

方法三:

在迭代中,将数组中的某值的对应计算值放入字典的同时,一边检测这个值是否已经存在字典中,若不存在则把他相应的计算值存入字典,若存在则将他们返回。

class Solution(object):
    def twoSum(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        """
        dic = {}
        l = len(nums)
        for i in range(l):
            a = target-nums[i]
            if nums[i] in dic:
                return [dic[nums[i]],i]
            else:
                dic[a] = i

时间复杂度O\left ( n \right ),只遍历了包含n个元素的列表一次。在表中进行的每次查找只花费 O\left ( 1 \right )的时间。

空间复杂度O\left ( n \right ), 所需的额外空间取决于字典中存储的元素数量,最多需要存储 n 个元素。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值