大数定理的基础马尔可夫不等式可以由空间几何的形式来证明和理解,把期望看成是对面的积分,成为几个空间体,它的体积大于以为厚度的概率分布面积形成的体积,并且直观能发现大得多,所以说马尔可夫给的界是比较宽泛的,但仍足以用来证明大数定理。