一条长廊里依次装有n(1 ≤ n ≤ 65535)盏电灯,从头到尾编号1、2、3、…n-1、n。
每盏电灯由一个拉线开关控制。开始,电灯全部关着。
有n个学生从长廊穿过。第一个学生把号码凡是1的倍数的电灯的开关拉一下;
接着第二个学生把号码凡是2的倍数的电灯的开关拉一下;
接着第三个学生把号码凡是3的倍数的电灯的开关拉一下;
如此继续下去,最后第n个学生把号码凡是n的倍数的电灯的开关拉一下。
n个学生按此规定走完后,长廊里电灯有几盏亮着。
注:电灯数和学生数一致。
解题思路一:要判断还剩几盏灯亮着,需要知道每盏灯是被操作奇数次还是偶数次。
若是偶数次,则该盏灯关闭;若为奇数次,则该盏灯打开
#include <stdio.h>
#define MAX 65535
int main(int argc, cahr* argv[])
{
int light_counter[MAX] = {0};
int light_number = 0;
int i = 1;
int j = 1;
//Get the number of times each light is operated
for(i = 1; i <= MAX; ++i)
{
for(j = 1; j <= MAX; ++j)
{
if(j % i == 0)
light_counter[j - 1] += 1;
}
}
for(i = 0; i < MAX; ++i)
{
if(light_counter[i] % 2 == 1)
light_number++;
}
printf("The number of light on is %d.", light_number);
return 1;
}
解题思路二:要知道每盏灯被操作的次数是奇数还是偶数,可以对于一个任意数m,都有一对因子i和j,使得i*j=m,则m编号的灯被i和j操作。若操作奇数次,则肯定会有一个数k,使得k*k=m。所以此题转换为求在1-65535中有多少个k*k
#include <stdio.h>
#define MAX 65535
int main(int argc, char* argv[])
{
int k = 1;
while(k * k <= MAX)
{
k++;
}
k -=1;
printf("The number of light on is %d.", k);
return 1;
}
很明显第二种解题思路优于第一种解题思路