Coloring Brackets CodeForces - 149D

区间DP
题目描述:输入一串保证合法的括号序列,要求给这个括号序列串染色,满足三个要求:(1·)染色要不为红,要么为蓝,要么不染色(2)每队匹配的括号,只能有一个染色(3)相邻的染色的括号不能染一个颜色。
解题分析:定义dp[l][r][x][y]为左边界为l,染色为x,右边界为r,染色为y满足条件的染色方案数。状态转移方程分两类:第一类是l和r本身是匹配的,另一类是不匹配的,此时就需要找到匹配的字符位置,再进行处理了。转移的过程就是枚举所有的x,y,注意需要判断合不合法,合法的话就转移,具体状态转移方程在代码中。

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

typedef long long LL;
const int color[4][2] = {{0,1},{0,2},{1,0},{2,0}};
const int maxn = 700 + 10;
const LL mod = 1000000007;
LL dp[maxn][maxn][3][3];
int stk[maxn],match[maxn];
char str[maxn];
int n;

LL dfs(int l,int r,int x,int y)
{
    if(dp[l][r][x][y] > -1) return dp[l][r][x][y];
    if(l == r - 1)//边界处理
    {
        for(int i = 0; i < 4; i++)
        {
            if(x == color[i][0] && y == color[i][1]) return dp[l][r][x][y] = 1;//如果是合法的话
        }
        return dp[l][r][x][y] = 0;//不合法
    }
    //处理非边界的情况
    LL ans = 0;
    if(match[l] == r)//如果左右两边界的括号匹配的话
    {
        bool is_ok = false;
        for(int i = 0; i < 4; i++)
        {
            if(x == color[i][0] && y == color[i][1])//如果合法的话
            {
                is_ok = true;
                for(int j = 0; j < 3; j++)
                {
                    for(int k = 0; k < 3; k++)
                    {
                        if(j != 0 && j == x || k != 0 && k == y) continue;//注意相邻染色的括号不能为同一个颜色
                        ans = (ans + dfs(l + 1,r - 1,j,k)) % mod;
                    }
                }
            }
        }
        if(!is_ok) return dp[l][r][x][y] = 0;//不合法
    }
    else
    {
        for(int i = l + 1; i <= r - 1; i++)
        {
            if(match[l] == i)//寻找与左边界匹配的括号位置
            {
                for(int j = 0; j < 3; j++)
                {
                    for(int k = 0; k < 3; k++)
                    {
                        if(j != 0 && k != 0 && j == k) continue;//不和法的情况
                        ans = (ans + dfs(l,i,x,j) * dfs(i + 1,r,k,y)) % mod;
                    }
                }
                break;
            }
        }
    }
    return dp[l][r][x][y] = ans;
}

int main()
{
    scanf("%s",str + 1);
    n = strlen(str + 1);
    int cnt = 0;
    for(int i = 1; i <= n; i++)//预处理每个字符与之匹配的字符在那个位置
    {
        if(str[i] == '(') stk[cnt++] = i;
        else
        {
            int t = stk[--cnt];
            match[i] = t;
            match[t] = i;
        }
    }
    memset(dp,-1,sizeof(dp));
    LL ans = 0;
    for(int i = 0; i < 3; i++)
    {
        for(int j = 0; j < 3; j++)
        {
            ans = (ans + dfs(1,n,i,j)) % mod;
        }
    }
    printf("%lld\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值