信息安全之加密域可逆信息隐藏RDH-EI(附加代码)

加密域可逆信息隐藏经典算法(附加代码)

本文介绍加密域可逆信息隐藏经典算法,张新鹏教授的《Reversible Data Hiding in Encrypted Image》。主要分为图像加密、信息嵌入、信息提取与图像恢复三个过程。(图片必须是bmp格式的)
(代码和图片下载:链接:https://pan.baidu.com/s/1T24P3IU2pVN8b0UNNXJ5VQ 提取码:7aq2)
总体展示如下
在这里插入图片描述
算法流程如下
在这里插入图片描述

图像加密

假设图像大小为nm。因为像素每位都是由8位组成的,所以随机生成一个01矩阵(大小为8×n×m)作为加密秘钥。将原图像与加密秘钥进行异或,完成加密。

%生成加密秘钥  
en_key =zeros(8,n,m);
for i=1:8
    en_key(i,(1:n),(1:m)) = rand(n,m) < 0.5;
end
en_key = double(en_key);

%对图像进行加密
encrypted_img_bin = zeros(8,n,m);
for i=1:8
    for j=1:n
        for k=1:m
              encrypted_img_bin(i, j, k) =  xor(original_img_bin(i, j, k),  en_key(i,j,k));  
        %     encripted_img_bin(i, j, k) =  mod(original_img_bin(i, j, k)+ en_key(i,j,k),2);
        end
    end
end

%将加密的二进制图像变成十进制
encrypted_img =zeros(n,m);
for i=1:8
    for j=1:n
        for k=1:m
            encrypted_img(j,k) = encrypted_img(j,k) + 2^(i-1) * encrypted_img_bin(i,j,k);
        end
    end
end

信息嵌入

将加密的图像分为块,每个块的大小为8(8*8),即s=8;每个块内嵌入一个像素。则能嵌入的信息大小为n×m/s^2。随机生成一个01矩阵作为信息。在嵌入信息之前,随机生成一个01矩阵(大小为n×m),0就是集合S0,1就是集合S1。把每个块内的像素都分为两个集合S0和集合S1。之后在每个块内开始嵌入信息。如果嵌入的信息是0,就把这个块内属于集合S0的像素的最低三位取反,S1集合不变。如果嵌入的信息是1,就把这个块内属于集合S1的像素的最低三位取反,S0集合不变。

%生成集合概率 如果 < 0.5 为S0集合, 否则为S1集合;
set = rand(n,m) < 0.5;
%生成嵌入信息 信息大小为[n/blocksize, m/blocksize]
message = rand(n/blocksize, m/blocksize) < 0.5;

%向加密图像中嵌入信息, 
for i=1:n/blocksize
    for j=1:m/blocksize
        if(message(i,j) == 0) %嵌入信息为0
            %将这块内的S0集合的后三位取反
            for k1=(i-1)*blocksize+1:i*blocksize
                for k2=(j-1)*blocksize+1:j*blocksize
                    if(set(k1,k2) == 0) 
                       for k3 =1:modify_bit 
                           encrypted_img_bin(k3,k1,k2) = ~encrypted_img_bin(k3,k1,k2); %取反
                       end
                    end
                end
            end
        else %嵌入信息为1
            %将这块内的S1集合的后三位取反
             for k1=(i-1)*blocksize+1:i*blocksize
                for k2=(j-1)*blocksize+1:j*blocksize
                    if(set(k1,k2) == 1) 
                       for k3 =1:modify_bit 
                           encrypted_img_bin(k3,k1,k2) = ~encrypted_img_bin(k3,k1,k2); %取反
                       end
                    end
                end
            end
        end
    end
end


%将嵌入信息的加密图像变成十进制
encrypted_img = zeros(n,m);
for i=1:8
    for j=1:n
        for k=1:m
            encrypted_img(j,k) = encrypted_img(j,k) + 2^(i-1) * encrypted_img_bin(i,j,k);
        end
    end
end

信息提取与图像恢复

首先先把嵌入信息的加密图像解密。把嵌入信息的加密图像与开始生成的随机秘钥异或,得到解密后的嵌入信息图像。

%解密已嵌入信息的加密图像
decrypted_img_bin = zeros(8,n,m);
for i=1:8
    for j=1:n
        for k=1:m
            decrypted_img_bin(i,j,k) = xor(encrypted_img_bin(i,j,k), en_key(i,j,k));  
        end
    end
end

%将解密后的已嵌入信息的加密图像转化为十进制
decrypted_img = zeros(n,m);
for i=1:8
    for j=1:n
        for k=1:m
            decrypted_img(j,k) = decrypted_img(j,k) + 2^(i-1) * decrypted_img_bin(i,j,k);
        end
    end
end

之后,把每个块内属于S0集合的像素的最低三位取反,S1集合的不变,形成一个新的块block0。把每个块内属于S1集合的像素的最低三位取反,S0集合不变,形成一个新的图像block1。在block0和block1中,就必定有一个是原始块,一个是更加混乱的块。如果block0是原始块,就表明嵌入的是0,否则嵌入的就是1。现在需要的是判断哪一个是原始块。我们可以根据在自然图像中,由于空间相关性的原因,原始块的波动函数普遍低于受严重干扰版本的波动函数。利用波动函数进行判断,波动函数值小的那个就是原始块。
在这里插入图片描述

%提取数据后恢复的图像
%利用波动公式判断每个块中嵌入的数据是0还是1
recover = zeros(n,m);
infermessage = zeros(n/blocksize,m/blocksize);
for i=1:n/blocksize
    for j=1:m/blocksize
        H0_img = zeros(n,m);
        H1_img = zeros(n,m);
        for k =(i-1)*blocksize+1:i*blocksize
            for k1=(j-1)*blocksize+1:j*blocksize
                %转化为十进制
                for k2=1:8
                    if(set(k,k1) == 0) 
                        if(k2 > modify_bit ) 
                            H0_img(k,k1) = H0_img(k,k1) + (decrypted_img_bin(k2,k,k1)) * 2 ^(k2-1);
                        else
                            H0_img(k,k1) = H0_img(k,k1) + ~(decrypted_img_bin(k2,k,k1)) * 2 ^(k2-1);
                        end %将H0集合后面三位取反
                        H1_img(k,k1) = H1_img(k,k1) + (decrypted_img_bin(k2,k,k1)) * 2 ^(k2-1); %H1集合不变
                    end
                    if(set(k,k1) == 1)
                        if(k2 > modify_bit ) 
                            H1_img(k,k1) = H1_img(k,k1) + (decrypted_img_bin(k2,k,k1)) * 2 ^(k2-1);
                        else%将H1集合后面三位取反
                            H1_img(k,k1) = H1_img(k,k1) + ~(decrypted_img_bin(k2,k,k1)) * 2 ^(k2-1);
                        end
                        H0_img(k,k1) = H0_img(k,k1) + (decrypted_img_bin(k2,k,k1)) * 2 ^(k2-1); %H0集合不变
                    end
                end
            end
        end
        f0 = 0;
        f1 = 0;
        %利用波动公式判断嵌入的数据是原图数据是H1集合还是H0集合
        for k2=(i-1)*blocksize+2:i*blocksize-1
            for k3=(j-1)*blocksize+2:j*blocksize-1
               f0 = f0 + abs( H0_img(k2,k3)-( H0_img(k2-1,k3) + H0_img(k2,k3-1) + H0_img(k2+1,k3) + H0_img(k2,k3+1))/4 );
               f1 = f1 + abs(H1_img(k2,k3)-(H1_img(k2-1,k3) + H1_img(k2,k3-1) + H1_img(k2+1,k3) + H1_img(k2,k3+1))/4 );
            end
         
        end
        if(f0 < f1)
                for k1 = (i-1)*blocksize+1:i*blocksize
                    for k2=(j-1)*blocksize+1:j*blocksize
                        recover(k1,k2) = H0_img(k1,k2);
                    end
                end
                infermessage(i,j) = 0;
        else
              for k1 = (i-1)*blocksize+1:i*blocksize
                    for k2=(j-1)*blocksize+1:j*blocksize
                        recover(k1,k2) = H1_img(k1,k2);
                    end
              end     
              infermessage(i,j) = 1;
        end
    end
end

将提取的信息与原信息进行对比,找出错误块。并计算峰值信噪比(PSNR)。

%原始图与从嵌入数据恢复的图像之间均方误差
s = 0;
for i=1:n
    for j=1:m
        s = s + ( double(original_img(i,j)) - decrypted_img(i,j))^2;
    end
end
mse1 = s/(n*m);
psnr1= 10*log10(255^2/mse1)%峰值信噪比 评价图像的指标
%PSNR值越大,就代表失真越少。

%原图像与提取数据恢复的图像之间均方误差
s = 0;
for i=1:n
    for j=1:m
        s = s + ( double(original_img(i,j)) - recover(i,j))^2;
    end
end
mse1 = s/(n*m);
psnr1= 10*log10(255^2/mse1)%峰值信噪比 评价图像的指标
%PSNR值越大,就代表失真越少。

交流可加QQ:1114693754

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bep_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值