POJ 1061 青蛙的约会

青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

构造方程再用拓展欧几里得求解即可,注意r = k*gcd, 因此求出的x最终要乘以k再取模求最小整数解,x的最小正周期b/gcd。

#include <iostream>
#include <cmath>
#include <algorithm>
#define endl "\n"

using namespace std;

typedef long long ll;

ll extendEuclid(ll a, ll b, ll& x, ll& y) {
        if(b == 0) {
                x = 1, y = 0;
                return a;
        }
        ll ans = extendEuclid(b, a%b, x, y);
        ll tmp = x;
        x = y;
        y = tmp - a/b*y;
        return ans;
}

int main()
{
        ios::sync_with_stdio(false);
        ll x, y, m, n, l;
        cin >> x >> y >> m >> n >> l;
                ll a = n-m, b = l, X, Y;
                ll gcd = extendEuclid(a, b, X, Y);
                ll r = x-y;
                if(r % gcd || m == n) {
                        cout << "Impossible" << endl;
                }
                else {
                      ll k = r / gcd;
                      ll ret = b / gcd;
                      if(ret < 0) ret = -ret;   // 模必须为正数
                      ll ans = ((X*k)%ret + ret) % ret; // 最小正周期b/gcd
                      cout << ans << endl;
                }

        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值