青蛙的约会
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
构造方程再用拓展欧几里得求解即可,注意r = k*gcd, 因此求出的x最终要乘以k再取模求最小整数解,x的最小正周期b/gcd。
#include <iostream>
#include <cmath>
#include <algorithm>
#define endl "\n"
using namespace std;
typedef long long ll;
ll extendEuclid(ll a, ll b, ll& x, ll& y) {
if(b == 0) {
x = 1, y = 0;
return a;
}
ll ans = extendEuclid(b, a%b, x, y);
ll tmp = x;
x = y;
y = tmp - a/b*y;
return ans;
}
int main()
{
ios::sync_with_stdio(false);
ll x, y, m, n, l;
cin >> x >> y >> m >> n >> l;
ll a = n-m, b = l, X, Y;
ll gcd = extendEuclid(a, b, X, Y);
ll r = x-y;
if(r % gcd || m == n) {
cout << "Impossible" << endl;
}
else {
ll k = r / gcd;
ll ret = b / gcd;
if(ret < 0) ret = -ret; // 模必须为正数
ll ans = ((X*k)%ret + ret) % ret; // 最小正周期b/gcd
cout << ans << endl;
}
return 0;
}