进制间的转换

对于整数而言,有四种表现形式:

     二进制:0,1, 满2进1

     八进制:0-7,   满8进1,用0开头表示

     十进制:0-9,   满10进1

     十六进制:0-9,A-F 满16进1,用0x开头表示

    在说换算前,先了解一下byte,是计算机存储数据的最小单位,1byte = 8个二进制位

    计算机则是以二进制存储数据的;

  十进制数125的十进制表示形式:

     125 = 5*10(0)+ 2 *10(1) +1*10(2);

  二进制数1101转化为十进制表示形式:

      1011 = 1 * 2(0) + 1 * 2(1) + 0 * 2(2) + 1 * 2(3);

               = 1           +   2         +   0        +  8

               =11

规律:可以看出来,0都是空位,所以换算的时候,不用考虑空位,只考虑1的值则可以,从做到右,每一个bit位的值分别为1,2,4,8,16,32,64,所以我们在将二进制转换成十进制时,只要累加1所在为的值,则可以了;

二进制数:0            1        0        1          0        1         1

对应的值:64         32      16        8         4        2          1

 

010-101-110

 2     5     6     这就是一个八进制数了,但是的在其前加0来表示0256

1010 - 1110

(8421)-(8421)  

   10       14    这就是一个十六进制数了,但是的在其前加0x来表示0xAE

 

结论:

八进制数,其实就是二进制位中3个二进制位就是一个八进制位;

十六进制数,其实就是二进制位中4个二进制位就是一个16进制位

 

十进制数转二进制数:

         这个用到初中的数学知识来做就可以;

        

          那么6的二进制数,则为110

 

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值