【线性dp】【题解】数字三角形

个人博客持续更新,体验效果更佳

算法分类

线性dp

题目描述

有一个由非负整数组成的三角形,第一行只有一个数,除了最下行之外每个数的左下方和右下方各有一个数。
图例:
在这里插入图片描述
从第一行的数开始,每次可以往左下或右下走一格,直到走到最下行,把沿途经过的数全部加起来。如何走才能使得这个和尽量大

输入格式:
第一行输入整数 n 表示三角形的层数。
在接下来的 n 行中,每一行表示三角形的中每一行整数,整数之间以空格隔开。


输出格式:
输出三角形从第一行的数到最后一行数所经过的数字之和的最大值。

样例输入:

4
1
3 2 
4 10 1
4 3 2 20


样例输出:

24


样例解释:
1—>2—>1—>20
1+2+1+20=24

数据范围与提示:
1 ≤ \leq n ≤ \leq 1000

解题思路

d p [ i ] [ j ] dp[i][j] dp[i][j]表示从(1,1)到(i,j)路径上的数的最大和
由此可以轻松推导出转移方程
(1 < i ≤ n且1 ≤ j ≤ n) f ( i , j ) = { f ( i − 1 , j − 1 ) + a [ i ] [ j ] , f(i-1,j-1) ≥ f(i-1,j) f ( i − 1 , j ) + a [ i ] [ j ] , f(i-1,j-1) < f(i-1,j) \text{(1$\lt$i$\leq$n且1$\leq$j$\leq$n)} \quad f(i,j)= \begin{cases} f(i-1,j-1)+a[i][j], &\text {f(i-1,j-1)$\geq$f(i-1,j)} \\ f(i-1,j)+a[i][j], &\text {f(i-1,j-1)$\lt$f(i-1,j)} \end{cases} (1<in1jn)f(i,j)={f(i1,j1)+a[i][j],f(i1,j)+a[i][j],f(i-1,j-1)f(i-1,j)f(i-1,j-1)<f(i-1,j)
即:
f [ i ] [ j ] = a [ i ] [ j ] + m a x ( f [ i − 1 ] [ j − 1 ] , f [ i − 1 ] [ j ] ) (1 < i ≤ n且1 ≤ j ≤ n) f[i][j]=a[i][j]+max(f[i-1][j-1],f[i-1][j]) \quad \text{(1$\lt$i$\leq$n且1$\leq$j$\leq$n)} f[i][j]=a[i][j]+max(f[i1][j1],f[i1][j])(1<in1jn)

Code

(仅供参考)

#include<iostream>
#include<cstdio>
using namespace std;
int n;
int a[1005][1005];         //构建数字三角形 
int dp[1005][1005],maxn;   //因为是非负整数,所以maxn初始化为0 
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=i;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
	dp[1][1]=a[1][1];       //初始化第一个点 
	for(int i=2;i<=n;i++)
	{
		for(int j=1;j<=i;j++)
		{
			dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+a[i][j];  //转移方程 
		}
	}
	for(int i=1;i<=n;i++)
	{
		maxn=max(maxn,dp[n][i]);   //因为终点不确定,所以遍历整个最后一行,找到最大路径 
	}
	printf("%d",maxn);
	return 0;
} 

链接

洛谷P1216

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值