1 n=1
f(n)={ a^b n=2
a^b*f(n-1)^c *f(n-2) 其他
给了你几个数:n,a,b,c,你需要输出f(n)模p后的数值 ,p是质数
思路:列几项后发现f(n) =(a^b)^指数,(a^b)是常数,对f(n)取
以(a^b)为底 的对数后,令F(n)=logf(n),F(n)=c*F(n-1)+F(n-2)n-2+1。
类比斐波那契数列,可以快速求出F(n), F(n+2) c 1 1 F(n+1)
F(n+1) = 1 0 0 * F( n )
1 0 0 1 1
因为F(n)可能很大所以用费马小定理x^(p-1)%p=1 (x与p互质),既算F(n)的过程中对p-1
取模。最后用快速幂算a^( b*F( n ) ) %p 。然后就愉快的WA了 QAQ。
理由很简单,用费马小定理条件为a与p互质,但是a与p不一定互质。因为p为质数所以a如果与p不互质
a一定为p的倍数,此时a的任意次幂对p取模都为0,直接输出答案。a如果与p互质则可以用费马小定理。
所以加个特判就过了。感觉把这道题做复杂了 23333333333 。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <queue>
#include <map>
#include <vector>
using namespace std;
const int N=100005;
//const int mod=1e9+7;
typedef long long ll;
typedef vector<ll > vec;
typedef vector<vec > mat;
ll p;
ll n,a,b,c;
mat mul(mat &A,mat &B){
mat C(A.size(), vec( B[0].size() ) );
for(int i=0;i<A.size();i++){
for(int k=0;k<B.size();k++){
for(int j=0;j<B[0].size();j++){
C[i][j]=( C[i][j]+A[i][k]*B[k][j] )%(p-1);
}
}
}
return C;
}
mat pow(mat A,ll n){
mat B( A.size(),vec(A.size() ,0 ) );
for(int i=0;i<A.size();i++){
B[i][i]=1;
}
while(n>0){
if(n&1)B=mul(B,A);
A=mul(A,A);
n>>=1;
}
return B;
}
ll mod_pow(ll x, ll n1, ll mod){
ll res=1;
while(n1>0){
if(n1&1)
res=res*x%mod;
x=x*x%mod;
n1>>=1;
}
return res;
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d%I64d%I64d%I64d",&n,&a,&b,&c,&p);
if( a%p==0 ){printf("0\n");continue;}
mat A( 3,vec( 3,0 ) );
A[0][0]=c; A[0][1]=1;A[0][2]=1;
A[1][0]=1; A[1][1]=0;A[1][2]=0;
A[2][0]=0; A[2][1]=0;A[2][2]=1;
A=pow(A,n-1);
ll logfn=A[1][0]+A[1][2];
ll tmp=( b*logfn )%(p-1);
printf("%I64d\n", mod_pow(a,tmp,p) );
}
return 0;
}