乘法游戏
题解:
显然对于一个区间[l,r],我们可以使所有情况得到考虑,我们先枚举区间长度,再枚举左端点这样就可以得到右端点,我们再对区间进行分割,枚举端点,进行计算,于是就得到了状态转移方程:
dp[l][r]=min(dp[l][r],dp[l][k]+dp[k][r]+a[l]*a[k]*a[r])
最后输出dp[1][n]即可
代码:
#include<bits/stdc++.h>
using namespace std;
int n,a[105],dp[105][105];
int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) scanf("%d",&a[i]);
for(int len=3; len<=n; len++) {
for(int l=1; l+len-1<=n; l++) {
int r=l+len-1;
dp[l][r]=10000000;
for(int k=l+1; k<=r-1; k++) dp[l][r]=min(dp[l][r],dp[l][k]+dp[k][r]+a[l]*a[k]*a[r]);
}
}
printf("%d",dp[1][n]);
return 0;
}
dfs版本:
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int n,a[105],dp[105][105];
int dfs(int i,int j){
if(j-i<=1)
return 0;
if(dp[i][j])
return dp[i][j];
dp[i][j]=0x3f3f3f3f;
for(int k=i+1;k<j;k++){
dp[i][j]=min(dp[i][j],dfs(i,k)+dfs(k,j)+a[i]*a[j]*a[k]);
}
return dp[i][j];
}
int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) scanf("%d",&a[i]);
/*for(int len=3; len<=n; len++) {
for(int l=1; l+len-1<=n; l++) {
int r=l+len-1;
dp[l][r]=10000000;
for(int k=l+1; k<=r-1; k++)
dp[l][r]=min(dp[l][r],dp[l][k]+dp[k][r]+a[l]*a[k]*a[r]);
}
}*/
dfs(1,n);
printf("%d",dp[1][n]);
return 0;
}
出现的亿点点问题:
1.不能保留区间求出的数,因为数字会删去
2.要注意记忆化搜索是当j-i=1时转移,因为j不可能等于i