读书笔记-- 京东电商推荐系统

参考:京东电商推荐系统实践

1.  简介

1.1 协同过滤系统

推荐系统最经典的就是协同过滤Collaborative Filtering(如下图)。

 1. user-based 基于用户的协同过滤;

 2. item-based 基于商品的协调过滤。

 1.2 learning to rank

       但现在绝大多数推荐系统都不会直接使用协同过滤来做推荐,目前主要用的是 learning to rank 框架。

上图是推荐系统的框架,可以分在线和离线两部分。

1.  在线部分主要负责当用户访问时,如何把结果拼装好,然后返回给用户。主要模块有召回、排序和对结果的调整

2.  离线部分主要是对用户日志的数据分析,应用于线上。

1.3 电商推荐系统的特殊之处

相比新闻、视频这类的内容推荐,电商推荐系统有更多的优化方向(点击、销售额、时长、用户留存等)。另外,电商中推荐的内容也会有很多种,尤其像是活动类的内容,很多推荐都是算法和人工运营共同完成的。

 在线推荐系统除了召回和排序以及最终的调整之外,还有实践过程中的一些细节。

  • 召回:有很多种方法,如协同过滤,热门商品、实时促销等和应用场景相关的召回,还有一些基于 KNN 的召回

  • 过滤:召回之后,会进行过滤,主要是和应用场景相关,如已购商品过滤掉、没有库存的过滤掉,或者敏感的商品过滤掉等等这些逻辑。

  • 排序:排序目前主要用到的是 DNN 模型,某些流量比较小的地方会用到 GBDT。

  • 过滤:排序之后还会有些分页、同商品过滤等逻辑。

调整:最终调整过程中,主要有两部分逻辑,多样性和探索逻辑

2.  排序模块

2.1  模型结构

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值