参考:京东电商推荐系统实践
1. 简介
1.1 协同过滤系统
推荐系统最经典的就是协同过滤Collaborative Filtering(如下图)。
1. user-based 基于用户的协同过滤;
2. item-based 基于商品的协调过滤。

1.2 learning to rank
但现在绝大多数推荐系统都不会直接使用协同过滤来做推荐,目前主要用的是 learning to rank 框架。

上图是推荐系统的框架,可以分在线和离线两部分。
1. 在线部分主要负责当用户访问时,如何把结果拼装好,然后返回给用户。主要模块有召回、排序和对结果的调整。
2. 离线部分主要是对用户日志的数据分析,应用于线上。
1.3 电商推荐系统的特殊之处
相比新闻、视频这类的内容推荐,电商推荐系统有更多的优化方向(点击、销售额、时长、用户留存等)。另外,电商中推荐的内容也会有很多种,尤其像是活动类的内容,很多推荐都是算法和人工运营共同完成的。

在线推荐系统除了召回和排序以及最终的调整之外,还有实践过程中的一些细节。
召回:有很多种方法,如协同过滤,热门商品、实时促销等和应用场景相关的召回,还有一些基于 KNN 的召回。
过滤:召回之后,会进行过滤,主要是和应用场景相关,如已购商品过滤掉、没有库存的过滤掉,或者敏感的商品过滤掉等等这些逻辑。
排序:排序目前主要用到的是 DNN 模型,某些流量比较小的地方会用到 GBDT。
过滤:排序之后还会有些分页、同商品过滤等逻辑。
调整:最终调整过程中,主要有两部分逻辑,多样性和探索逻辑。

最低0.47元/天 解锁文章
3254

被折叠的 条评论
为什么被折叠?



