约瑟夫环问题 —— 递归法的简单易懂的解释

本文详细解析约瑟夫环问题,通过递归法思路进行解答,探讨如何从最后的节点反推至初始状态,以求得最后剩下士兵的编号。分析过程中包括关键步骤的逻辑解释,并通过具体实例展示递归过程,帮助理解复杂问题的简化解决方案。
摘要由CSDN通过智能技术生成

最近看了大佬的一篇博客:一行代码解决约瑟夫环问题    前面两个方法都看懂了,比较简单,但是最后一个只用一行代码的解法,实在是没有看懂,但是根据大佬的思路,我也做出了自己的解释,虽然在简洁性上不如大佬的一行完毕,但是整个思路不是很难懂,主要是记忆起来比较方便。大家可以先尝试看看大佬解法。

问题描述

编号为 1-N 的 N 个士兵围坐在一起形成一个圆圈,从编号为 1 的士兵开始依次报数(1,2,3…这样依次报),数到 m 的 士兵会被杀死出列,之后的士兵再从 1 开始报数。直到最后剩下一士兵,求这个士兵的编号。

 

数组和环形链表的解法就不再赘述,主要说一下我基于大佬第三种解法思路的解法。

思路

整个场景的执行流程抽象出来,就是节点删除、序号重组的过程。每一次删除一个节点,下一次的开始的位置就是被删除掉的节点的后一个节点,最后一直删除删除,直到只剩下一个节点。 那么反过来想,从最终的状态,到最开始的状态,不就意味着是一个插入节点的过程。  题目要求解最后一个剩下的士兵的编号,也就意味着我们从最终状态剩下的那个节点开始反推,反推到初始状态时的情况,就可以求解出最终的节点在初始状态时对应的位置,也就是编号。

假设最后剩下的那个节点是FN,则最后的时候报数的起点是FN,下标为0. 我们使用f(n,m)表示当有n个节点时,马上要开始的下一轮报数的起点的下标,那么f(1,m) = 0.   如何确定f(2,m)? 这个就要从f(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值