问题描述:
输入N个数,找出其中的最大最小值,用分治法求解问题。
设计思路:
常规的做法是遍历一次,分别求出最大值和最小值,但我这里要说的是分治法,将数组分成左右两部分,先求出左半部份的最大值和最小值,再求出右半部份的最大值和最小值,然后综合起来求总体的最大值及最小值。这是个递归过程,对于划分后的左右两部分,同样重复这个过程,直到划分区间内只剩一个元素或者两个元素,最后得出最大最小值。
解决问题的策略:
1.蛮力策略:蛮力策略是一种简单直接的方法,通过逐个比较来查找最大和最小的数。对于n个数,蛮力策略需要进行(n-1)次比较才能得到最大和最小值。
2.分治法:分治法(二分法)策略是一种更高效的方法,可以将问题简化为在n个数中寻找最大和最小值。具体步骤如下:
- 将数据等分为两组(两组数据的个数可能相差1),目的是分别选取其中的最大和最小值。
- 递归地将每组数据继续分解,直到每组元素的个数小于等于2,这样就可以简单地找到其中的最大和最小值。
- 回溯时,将子问题的解合并起来。在两个子问题的解中,选择较大的数作为当前问题的最大值,选择较小的数作为当前问题的最小值。
这样,通过分治法(二分法)策略,可以更快地找到最大和最小值。
代码实现:
#include<iostream>
#include<cstdlib>
#include<cstdio>
using namespace std;
const int N=1000;
int mini,maxi;
int l[N];
void maxMin(int i,int j,int &max,int &min);
int main()
{
int n;
cout<<"请输入数组元素个数: ";
cin>>n;
cout<<"请输入"<<n<<"个元素:";
for(int i=0;i<n;i++)
cin>>l[i];
maxMin(0,n-1,maxi,mini);
cout<<"最大元素: "<<maxi<<endl;
cout<<"最小元素: "<<mini<<endl;
return 0;
}
void maxMin(int i,int j,int &max,int &min)
{
int min1,max1;
if(i==j) max=min=l[i]; //表中只有一个元素时
else if(i==j-1) //表中有两个元素时
if(l[i]<l[j]){
max=l[j];
min=l[i];
}
else
{
max=l[i];
min=l[j];
}
else //表中多于两个元素时
{
int m=(i+j)/2; //对半分割
maxMin(i,m,max,min); //求前部分中的最大、最小值
maxMin(m+1,j,max1,min1);//求后部分中的最大、最小值
if(max<max1) max=max1; //两部分最大元的大者为结果最大者
if(min>min1) min=min1; //两部分最小元的小者为结果最小者
}
}
运行结果: