C语言用分治法找数组最大和最小元素算法实现

本文介绍了如何使用分治法(二分法)在C++中解决寻找数组最大值和最小值的问题,对比了蛮力策略的效率,通过递归实现并给出了代码实例。
摘要由CSDN通过智能技术生成

问题描述:

       输入N个数,找出其中的最大最小值,用分治法求解问题。

设计思路:

       常规的做法是遍历一次,分别求出最大值和最小值,但我这里要说的是分治法,将数组分成左右两部分,先求出左半部份的最大值和最小值,再求出右半部份的最大值和最小值,然后综合起来求总体的最大值及最小值。这是个递归过程,对于划分后的左右两部分,同样重复这个过程,直到划分区间内只剩一个元素或者两个元素,最后得出最大最小值。

解决问题的策略:

1.蛮力策略:蛮力策略是一种简单直接的方法,通过逐个比较来查找最大和最小的数。对于n个数,蛮力策略需要进行(n-1)次比较才能得到最大和最小值。

2.分治法:分治法(二分法)策略是一种更高效的方法,可以将问题简化为在n个数中寻找最大和最小值。具体步骤如下:

  1. 将数据等分为两组(两组数据的个数可能相差1),目的是分别选取其中的最大和最小值。
  2. 递归地将每组数据继续分解,直到每组元素的个数小于等于2,这样就可以简单地找到其中的最大和最小值。
  3. 回溯时,将子问题的解合并起来。在两个子问题的解中,选择较大的数作为当前问题的最大值,选择较小的数作为当前问题的最小值。

这样,通过分治法(二分法)策略,可以更快地找到最大和最小值。

代码实现:

#include<iostream>

#include<cstdlib>

#include<cstdio>

using namespace std;

const int N=1000;

int mini,maxi;

int l[N];



void maxMin(int i,int j,int &max,int &min);



int main()

{

    int n;

    cout<<"请输入数组元素个数: ";

    cin>>n;

    cout<<"请输入"<<n<<"个元素:";

    for(int i=0;i<n;i++)

        cin>>l[i];

    maxMin(0,n-1,maxi,mini);

    cout<<"最大元素: "<<maxi<<endl;

    cout<<"最小元素: "<<mini<<endl;

    return 0;

}



void maxMin(int i,int j,int &max,int &min)

{

    int min1,max1;

    if(i==j) max=min=l[i];    //表中只有一个元素时

    else if(i==j-1)           //表中有两个元素时

        if(l[i]<l[j]){

            max=l[j];

            min=l[i];

        }

        else

        {

            max=l[i];

            min=l[j];

        }

    else                      //表中多于两个元素时

    {

        int m=(i+j)/2;        //对半分割

        maxMin(i,m,max,min);  //求前部分中的最大、最小值

        maxMin(m+1,j,max1,min1);//求后部分中的最大、最小值

        if(max<max1) max=max1; //两部分最大元的大者为结果最大者

        if(min>min1) min=min1; //两部分最小元的小者为结果最小者

    }

}

运行结果:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涣清。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>