实验2、黑盒测试方法:等价类划分法+边界值分析方法
一、实验目的
- 掌握等价类、有效等价类、无效等价类、边界值等概念。
- 掌握边界值分析法、等价类划分法的测试用例设计方法。
- 能够将这两种方法结合起来,灵活运用
二、实验任务
以下三个任务、至少完成一个
1、对三角问题综合运用边界值分析方法、等价类划分方法设计测试用例。
三角形问题:void Triangle (int a, int b, int c)函数规定输入三个整数a、b、c分别作为三边的边长构成三角形。通过程序判定所构成的三角形的类型(等边三角形、等腰三角形、一般三角形、构不成三角形),并在屏幕上输出。1<=a,b,c<=200。
实验步骤:
- 划分等价类,得到等价类表。等价类表格式如下:
输入变量 | 有效等价类 | 无效等价类 |
a,b,c | <a,b,c>:边为a,b,c的一般三角形 | a输出超出预定值 |
a,b,c | <a,b,c>:边为a,b,c的等边三角形 | b输出超出预定值 |
a,b,c | <a,b,c>:边为a,b,c的等腰三角形 | c输出超出预定值 |
a,b,c | <a,b,c>:边为a,b,c不能组成三角形 |
- 综合运用这两种方法设测试用例,得到测试用例表:
边界值 | a | b | c |
0,201 | |||
0,201 | |||
0,201 |
- 综合运用这两种方法设测试用例,得到测试用例表:
测试用例ID | a | b | c | 预期输出 |
T1 | 5 | 5 | 5 | 等边三角形、等腰三角形 |
T2 | 2 | 2 | 3 | 等腰三角形 |
T3 | 3 | 4 | 5 | 一般三角形 |
T4 | 201 | 0 | 50 | 不构成三角形 |
T5 | -1 | 30 | 30 | 不构成三角形 |
T6 | -30 | -30 | -30 | 不构成三角形 |
T7 | 10 | 10 | 10 | 等边三角形 |
T8 | 200 | 1 | 17 | 一般三角形 |
T9 | 90 | 200 | 90 | 等腰三角形 |
- 根据上述测试用例表,能否进行优化,获得最小测试用例集合:
测试用例ID | a | b | c | 预期输出 |
T5 | 5 | 5 | 5 | 等边三角形 |
T6 | 2 | 2 | 3 | 等腰三角形 |
T7 | 3 | 4 | 5 | 一般三角形 |
T8 | 201 | 0 | 50 | 不构成三角形 |
2、对于找零钱最佳组合问题运用边界值分析法设计测试用例。实验步骤:
- 分析边界值。
付款={-1,0,100,101}
总价={-1,0,100,101}
余额={0,4,5,9,10,49,1}
- 运用健壮性边界条件法设计测试用例,得到测试用例表(测试用例表格式同实验1)。
测试标号 | 付款 | 总价 | 余额 | 预期结果 |
T1 | -1 | 50 | 不符合标准 | |
T2 | 0 | 50 | 不符合标准 | |
T3 | 100 | 50 | 50 | 1 |
T4 | 101 | 50 | 请给零钱 | |
T5 | 50 | -1 | 不符合标准 | |
T6 | 50 | 0 | 50 | 1 |
T7 | 50 | 100 | 超出范围 | |
T8 | 50 | 101 | 超出范 | |
T9 | 60 | 59 | 1 | 1 |
T10 | 72 | 23 | 49 | 9 |
T11 | 85 | 75 | 10 | 1 |
T12 | 80 | 71 | 9 | 5 |
T13 | 95 | 90 | 5 | 1 |
T14 | 55 | 51 | 4 | 4 |
T15 | 50 | 50 | 0 | 0 |
- 执行测试,填写软件缺陷报告(软件缺陷报告格式同实验1)。
测试模块 | 找零钱 | 开发者 | 冲 | |
测试员 | 冲 | 测试日期 | 2022-3-19 | |
软件缺陷列表 | ||||
缺陷ID | 软件详细信息 | |||
1 | 付款为-1,总价为50时,预期为不符合标准,但输出50的张数:-1;10的张数0,5的张数0;1的张数为-1;总张数为-2 | |||
2 |
| |||
3 |
| |||
4 |
| |||
5 |
|
3、现有一个程序int CheckTel(char *rc, char *n)执行电话号码有效性检查功能,中国的固定电话号码由两部分组成。这两部分的名称和内容分别是:
- 地区码(rc):以0开头的三位或者四位数字(包括0)。
- 电话号码(n):以非0、非1开头的七位或者八位数字。
对该程序进行边界值分析,然后进行等价类划分,分别运用边界值条件、等价类划分的结果来设计测试用例,并尽可能优化所设计的测试用例。
实验步骤:同上,注意考虑内部边界值。