后序线索化二叉树及遍历(图解)

上一篇博客对于 二叉树线索化以及线索化的先序、中序、后序遍历做了比较详细的描述

写在前面

 其实,我还是很想把本篇博客和二叉树的线索化写在一块的,但是考虑到可能这博客的内容就看足以超过了上一篇的篇幅,考虑到读者可能会疲乏,而且这篇也是线索二叉树中最难的了(查阅了很多网上的资料也鲜有人来讲述后序线索二叉树的遍历,有的就算有也只是把代码放在那里,理解 对于初学者还是有点困难的)


构建节点多了双亲节点节点

typedef enum
{
	Link,
	Thread
}Pointer;

typedef struct TriTreeNode
{
	TriTreeNode(const char data)
	:_data(data)
	, pLeft(NULL)
	, pRight(NULL)
	, pParent(NULL)
	, Ltag(Link)
	, Rtag(Link)
	{}
	char _data;
	struct TriTreeNode* pLeft;
	struct TriTreeNode* pRight;
	struct TriTreeNode* pParent;//双亲
	Pointer Ltag, Rtag;
}TriTreeNode;


还是先给出一个树结构吧:


后序线索化二叉树

后序的顺序是:左- 右-根

思路:和先序、中序线索化二叉树的顺序是一样的,在此不再赘述,想看的话上一篇博客会让你满意的。


上代码:

void _PostThreading(TriTreeNode*&  Root)
	{
		if (Root)
		{
			_PostThreading(Root->pLeft);
			_PostThreading(Root->pRight);
			if (Root->pLeft == NULL)
			{
				Root->pLeft = Prev;
				Root->Ltag = Thread;
			}
			if (Prev && Prev->pRight == NULL ) //条件 Prev
			{
				Prev->pRight = Root;
				Prev->Rtag = Thread;
			}
			Prev = Root;
		}
	}

如下图,后序线索化的二叉树


!!!

后序遍历线索二叉树

由后序遍历的顺序,我们很容易就想到了找到后序遍历的起点(左子树最左边的节点),然后一直遍历节点的后继(记住每次遍历的前一个节点),当遍历到节点没有后继了,我们就判断是不是到了根节点了(如果根节点没有右子树,就是这种情况了),要是还没有到根节点,那就继续找寻节点的双亲节点(此时就需要我们催节点的结构进行增加双亲节点了),一直找到根节点的位置,继续判断根节点是不是存在右子树(注意这里不能用NULL判断右子树是不是存在,而是用右子树存在的标识Rtag )

好了,描述再多还是代码代码来的实在!!!

	void _PostOrder(TriTreeNode* Root)
	{
		if (Root)
		{
			TriTreeNode* pCur = Root;
			Prev = NULL;
			while (pCur != NULL)
			{
				//第一步:找树最左边的节点
				while ( pCur->pLeft != Prev && pCur->Ltag == Link) //左子树
				{
					pCur = pCur->pLeft;
				}
				//循环结束后 pCur== Root 或者为空

				//第二步:访问后继
				while (pCur && pCur->Rtag== Thread)
				{
					cout << pCur->_data << ' ';
					Prev = pCur;
					pCur = pCur->pRight;
				}
				//判断此时pCur是不是指向了根节点
				if (pCur == Root)
				{
					cout << pCur->_data << ' ';
					return;
				}
				while (pCur && pCur->pRight == Prev)
				{
					cout << pCur->_data << ' ';
					Prev = pCur;
					pCur = pCur->pParent;  //往上一级走
				}
				//这里不能用NULL判断,而是用Rtag
				if (pCur && pCur->Rtag == Link)
				{
					pCur = pCur->pRight;
				}
			}
	        //end-while
		}
	}
下面就是对代码的一一讲述 < 福利来了>

首先对,大循环中的第一个循环解释(找到最左边的节点)


第二个循环(访问后继)


第三个循环以及后面的判断


后面就是对代码的测试


来个简单的Tree

加深一点

再难点吧。哈哈



能看到这里的都是好样的!


全部代码

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;

typedef enum
{
	Link,
	Thread
}Pointer;

typedef struct TriTreeNode
{
	TriTreeNode(const char data)
	:_data(data)
	, pLeft(NULL)
	, pRight(NULL)
	, pParent(NULL)
	, Ltag(Link)
	, Rtag(Link)
	{}
	char _data;
	struct TriTreeNode* pLeft;
	struct TriTreeNode* pRight;
	struct TriTreeNode* pParent;//双亲
	Pointer Ltag, Rtag;
}TriTreeNode;

class PostThread_BiTree
{
public://先序遍历创建树
	PostThread_BiTree(const char arr[], size_t size)
	{
		size_t index = 0;
		TriTreeNode* parent = NULL;
		_Creat_Bitree(_pRoot, arr, size, index, parent);
	}
protected:
	void _Creat_Bitree(TriTreeNode*& Root, const char arr[], size_t size, size_t& index , TriTreeNode*& parent)
	{
		if (arr && size > index && arr[index] != '#')
		{
			Root = new TriTreeNode(arr[index]);
			Root->pParent = parent;

			_Creat_Bitree(Root->pLeft, arr, size, ++index , Root);  //每次传双亲节点
			_Creat_Bitree(Root->pRight, arr, size, ++index , Root);
		}
	}
public:
	//后序线索化
	void PostTreading()
	{
		_PostThreading(this->_pRoot);
	}
protected:
	void _PostThreading(TriTreeNode*&  Root)
	{
		if (Root)
		{
			_PostThreading(Root->pLeft);
			_PostThreading(Root->pRight);
			if (Root->pLeft == NULL)
			{
				Root->pLeft = Prev;
				Root->Ltag = Thread;
			}
			if (Prev && Prev->pRight == NULL ) //条件 Prev
			{
				Prev->pRight = Root;
				Prev->Rtag = Thread;
			}
			Prev = Root;
		}
	}
public:
	void PostOrder()
	{
		_PostOrder(this->_pRoot);
	}
protected:
	void _PostOrder(TriTreeNode* Root)
	{
		if (Root)
		{
			TriTreeNode* pCur = Root;
			Prev = NULL;
			while (pCur != NULL)
			{
				//第一步:找树最左边的节点
				while ( pCur->pLeft != Prev && pCur->Ltag == Link) //左子树
				{
					pCur = pCur->pLeft;
				}
				//循环结束后 pCur== Root 或者为空

				//第二步:访问后继
				while (pCur && pCur->Rtag== Thread)
				{
					cout << pCur->_data << ' ';
					Prev = pCur;
					pCur = pCur->pRight;
				}
				//判断此时pCur是不是指向了根节点
				if (pCur == Root)
				{
					cout << pCur->_data << ' ';
					return;
				}
				while (pCur && pCur->pRight == Prev)
				{
					cout << pCur->_data << ' ';
					Prev = pCur;
					pCur = pCur->pParent;  //往上一级走
				}
				//这里不能用NULL判断,而是用Rtag
				if (pCur && pCur->Rtag == Link)
				{
					pCur = pCur->pRight;
				}
			}
	        //end-while
		}
	}
private:
	TriTreeNode* _pRoot;
	TriTreeNode* Prev;
};

void Test()
{
	char* arr = "013##4##25##6##";
	PostThread_BiTree tree(arr, strlen(arr)); //构建三叉树
	tree.PostTreading();
	tree.PostOrder();//arr 3 4 1  5 6 2  0
	cout << endl << "______________________" << endl;

	char* arr1 = "013##4##2#56###";
	char* arr2 = "12#3##4##";
	PostThread_BiTree tree1(arr2, strlen(arr2));
	tree1.PostTreading();
	tree1.PostOrder();
	cout << endl << "______________________" << endl;

	char* arr3 = "12#3#4##5##";
	PostThread_BiTree tree2(arr3, strlen(arr3));
	tree2.PostTreading();
	tree2.PostOrder();
	cout << endl << "______________________" << endl;

	char* arr4 = "126##3#4##5##";
	PostThread_BiTree tree3(arr4, strlen(arr4));
	tree3.PostTreading();
	tree3.PostOrder();
	cout << endl << "______________________" << endl;

}
int main()
{
	Test();
	return 0; 
}


<think>好的,我现在需要回答用户关于后序线索二叉树如何查找前驱和后继节点的问题。首先,我需要回忆线索二叉树的基本概念,尤其是后序线索的特点。根据之前的引用资料,线索二叉树通过添加指向前驱和后继的线索来优遍历,避免递归或栈的使用。 后序遍历的顺序是左子树、右子树、根节点。所以,在后序线索二叉树中,每个节点的前驱和后继应该符合这个顺序。用户的问题分为两部分:如何查找前驱和如何查找后继。 先看前驱节点的查找。根据后序遍历的特点,一个节点的前驱可能是其右子树的最后一个节点,或者左子树的最后一个节点,如果右子树不存在的话。或者,如果节点有左孩子,那么前驱可能是左子树的后序最后一个节点。不过线索后,可能需要利用线索指针。根据引用3中的中序线索二叉树前驱查找方法,类似地,后序线索的前驱可能通过左指针或线索来找到。但需要具体分析。 接下来是后继节点的查找。后序遍历中,根节点是最后访问的,所以一个节点的后继可能比较复杂,因为父节点可能在后面,但需要确定具体位置。例如,如果一个节点是父节点的右孩子,那么父节点就是其后继;如果是左孩子且父节点有右孩子,则后继可能是父节点右子树的最左节点?或者可能需要通过父指针来找,因为根据引用1,如果没有线索,可能需要三叉链表或从根开始遍历。 根据引用2中的内容,后序线索二叉树找后继是没有直接方法的,可能需要借助父节点。而找前驱可能相对容易,如果有线索的话。例如,如果节点的左指针是线索,那么直接指向其前驱;否则,左子树的最右节点可能是前驱。 另外,用户提供的引用1提到,在先序线索二叉树中,如果ltag为0,则无法直接找到前驱,必须通过遍历或三叉链表。而后序线索二叉树可能有类似的问题,但方向不同。需要详细分析两种情况:当线索存在和不存在时如何处理。 总结后序线索二叉树的前驱查找: 1. 如果节点的左指针是线索(ltag=1),则左指针直接指向前驱。 2. 如果ltag=0,说明有左孩子,那么根据后序遍历的顺序,前驱应该是右子树的最后一个节点,或者如果右子树不存在,则是左子树的最后一个节点。例如,假设节点有右孩子,则前驱是右孩子;如果没有右孩子但有左孩子,则是左孩子。或者可能需要找到其右子树的最右节点?或者可能更复杂,需要考虑父节点的情况? 比如,在后序遍历中,节点X的前驱是其右子树的最后一个访问节点,如果没有右子树,则是左子树的最后一个访问节点。如果都没有,则可能是父节点的某个情况? 而后继的查找更为复杂,因为后序中后继通常是父节点,但需要看父节点的结构。例如,如果节点是父节点的右孩子,那么父节点就是后继。如果是父节点的左孩子,且父节点有右孩子,则后继是父节点右子树的后序第一个节点?或者可能无法直接通过线索找到,需要父指针的帮助。 根据引用2中的内容,后序线索二叉树找后继是没有直接方法的,可能需要三叉链表中的父指针。因此,在后序线索二叉树中,找后继节点可能需要借助父节点指针。例如: - 如果节点是根节点,则没有后继。 - 如果节点是其父的右孩子,则父节点是后继。 - 如果节点是其父的左孩子,且父有右孩子,则后继是父右子树的后序第一个节点(即父右子树的左子树的最左节点?或者直接父的右子树按后序的第一个节点?可能需要更详细的分析)。 因此,实现方法可能需要: 对于前驱: - 如果左指针是线索,直接返回。 - 否则,根据后序遍历的顺序,找到左子树或右子树的最后一个节点。 对于后继: - 需要父指针,如果节点是父的右孩子,父是后继。 - 如果是父的左孩子,且父有右孩子,则找父右子树的最左下的节点? - 或者,如果存在右线索,则直接使用线索,否则可能需要遍历。 但根据引用3中的代码示例,中序线索二叉树的前驱查找利用了左子树的最右下节点,类似地,后序可能需要不同的处理。 可能我的思路有些混乱,需要更系统地整理。例如,后序线索二叉树中: 前驱节点查找: 1. 如果p->ltag == 1,则前驱是p->lchild。 2. 如果p->ltag == 0,则: - 如果存在右孩子(p->rtag == 0),则前驱是右孩子。 - 否则,前驱是左孩子。 但不确定是否正确。或者可能更复杂,比如当有右子树时,前驱是右子树的最后一个访问节点,即右孩子自己?或者需要找到右子树的后序最后一个节点? 而后继节点查找: 如果节点p是某个节点q的右孩子,或者节点p是q的左孩子且q没有右孩子,那么q是p的后继。但如何找到q?此时需要父指针。例如,当存在父指针时,可以通过父节点来判断。否则,无法直接找到,必须通过从根开始遍历。 因此,结论可能是: 在后序线索二叉树中: - 找前驱可以通过线索或子树结构。 - 找后继通常需要父指针,否则无法高效实现,只能遍历。 结合引用中的信息,用户提供的引用2中提到,后序线索二叉树找后继没有方法,而找前驱可以通过线索或子树。引用1提到在先序中无法直接找到前驱时需遍历或使用三叉链表,同样,后序可能需要类似的方法。 因此,正确的算法可能如下: 前驱节点: 1. 如果p->ltag == 1,前驱是lchild。 2. 否则,如果p有右孩子(rtag == 0),则前驱是右孩子。 3. 否则,前驱是左孩子。 后继节点: 需要父指针: 1. 如果p是根节点,则无后继。 2. 如果p是其父的右孩子,则父是后继。 3. 如果p是父的左孩子,且父有右孩子,则后继是父右子树的后序第一个节点(即父右子树的第一个被后序访问的节点,可能为父的右孩子的最左下的节点?或者直接父的右孩子?) 或者,若父的右孩子存在,则后继是父的右子树在后序遍历中的第一个节点,即父的右子树的最左子树的最深节点?或者需要具体分析。 但可能更简单的情况是,当存在父指针时: - 如果p是父的右孩子,则父是后继。 - 如果p是父的左孩子,父的右孩子存在,则后继是父的右孩子的最左下的节点? 或者,父的右子树按后序的第一个节点是父的右子树的根吗?后序的顺序是左、右、根,所以父的右子树的第一个访问节点是左子树的最左节点? 这部分可能需要更详细的分析,或者参考教材中的标准算法。 例如,假设在后序遍历中,节点p的后继q的情况: - 如果p是父的右孩子,则父节点是q。 - 如果p是父的左孩子,父的右孩子存在,则q是父的右子树的后序第一个节点,即父的右子树的第一个访问的节点。但后序是左、右、根,所以整个右子树的第一个访问节点是最左边的叶子节点? 或者,这可能不正确,因为后序遍历整个右子树的顺序是先左子树,再右子树,最后根节点。所以父的右子树的第一个被访问的节点是左子树的最左叶子?或者可能父的右子树的第一个被访问节点是左子树的根?这可能需要具体例子来验证。 例如,父节点为A,右孩子为B。B的后序顺序是:B的左子树,B的右子树,B。所以B的第一个访问节点是其左子树的左叶子,如果存在的话,否则是B的右子树的左叶子,如果都没有,则是B自己。因此,如果父的右孩子B没有左子树,则第一个访问的是B的右子树,如果也没有,则B自己。 这可能比较复杂,所以如果没有父指针的话,很难直接找到后继。因此,根据引用中的信息,后序线索二叉树找后继可能需要父指针的支持,否则无法高效实现。 综上,回答用户的问题时,需要明确: 在后序线索二叉树中: 1. 查找前驱节点: - 若左指针是线索,直接得到前驱。 - 否则,如果有右孩子,则前驱是右孩子;否则,前驱是左孩子。 2. 查找后继节点: - 需要父指针,若没有则无法直接找到,必须遍历。 - 如果存在父指针,则根据情况判断:如果节点是父的右孩子,则父是后继;如果是父的左孩子,且父有右孩子,则后继是父的右子树的后序第一个节点(可能需要递归查找)。 或者可能需要更准确的算法描述,例如: 前驱: - 如果p->ltag == 1,前驱是lchild。 - 否则,如果有右孩子(rtag == 0),则前驱是右孩子。 - 如果没有右孩子但有左孩子(rtag ==1,ltag ==0),则前驱是左孩子。 这可能不准确,例如考虑一个具体例子: 假设节点X有左孩子和右孩子,后序遍历顺序是左、右、X。所以X的前驱应该是右孩子。如果X没有右孩子,则前驱是左孩子。如果X也没有左孩子,则前驱是父节点的某个节点? 或者,在后序线索二叉树中,每个节点的前驱确实是其右子树的最后一个访问节点,或者左子树的最后一个访问节点,如果没有右子树的话。 这部分可能需要更仔细的思考。例如,后序遍历中,节点的前驱应该是其后序遍历中的前一个节点。例如: 考虑一个简单的二叉树: A / \ B C 后序遍历顺序是 B -> C -> A。 对于节点C,前驱是B;对于A,前驱是C。节点B的前驱不存在(假设是第一个节点)。 如果C是某个节点的右孩子,那么C的前驱是B,但B是左孩子,所以在这种情况下,如果C有左兄弟B,则前驱是B的后序最后一个节点?或者可能,在这种情况下,节点C的前驱是B? 是的,所以在上述例子中,C的前驱是B。而B的前驱没有,或者可能要看父节点的情况。 回到问题,如何在后序线索二叉树中找到前驱: 假设节点p的后序前驱是其后序遍历中的前一个节点。根据后序线索的结构: 如果p的左指针是线索,那么直接指向其前驱。 否则,根据后序遍历的规则,p的前驱应该是其右子树的最后一个节点(如果存在右子树的话),否则是其左子树的最后一个节点。但是,如果p没有子节点,那么前驱可能无法通过子节点找到,需要父节点。 但根据线索二叉树的定义,如果p的左右孩子存在,那么他们的指针不会被线索,即ltag和rtag为0。此时,寻找前驱可能需要遍历子树。 例如,当p的rtag=0,即存在右孩子,那么根据后序的顺序,右孩子是前驱吗?或者右子树的后序最后一个节点? 例如,假设p有右孩子R,那么在后序中,R的后序是R的左、R的右、R。所以p的后序顺序是:左子树的后序,右子树的后序,p。所以p的前驱应该是右子树的后序最后一个节点,即R的后序最后一个节点是R自己(如果R没有左右子树的话),或者R的右子树的最深节点? 这可能比较复杂,所以正确的算法应该是: 当p->ltag=1时,前驱是lchild。 当p->ltag=0时,说明存在左或右孩子。此时,前驱是右子树的最后一个节点(如果有右子树),否则是左子树的最后一个节点。如何找到最后一个节点?在后序中,最后一个节点是根节点本身。例如,右子树的最后一个节点是右子树的后序最后一个节点,也就是右子树的根节点? 或者可能需要找到右子树的最右下节点,但这可能因结构而异。 这部分可能需要参考标准的后序线索二叉树前驱查找算法。根据所学知识,后序线索二叉树中: 一个节点的前驱可以通过以下方式找到: - 如果节点的左指针是线索,则前驱是左指针指向的节点。 - 否则,如果节点有右孩子,则前驱是右孩子。 - 如果节点没有右孩子但有左孩子,则前驱是左孩子。 这可能是一个简的方法,但需要验证是否正确。例如,当节点有右孩子时,后序遍历中右孩子确实是在节点之前被访问的,所以前驱是右孩子。如果右孩子还有子树,则前驱应该是右子树中最后一个被访问的节点,即右子树的根节点? 例如,假设节点p的右孩子是R,R有左孩子RL和右孩子RR。后序遍历顺序是 RL -> RR -> R -> ... -> p。所以p的前驱应该是R的最后一个访问节点,即R自己。因此,不管右子树如何,只要存在右孩子,前驱就是右孩子自己?这似乎不对,因为如果右子树有多个节点,那么前驱应该是右子树最后一个被访问的节点,也就是R的最后一个节点,即RR的右子树的最深节点? 这说明之前的简方法可能有误,正确的做法可能需要找到右子树在后序遍历中的最后一个节点,即右子树的最右下方节点,这可能类似于中序中的找最右下节点的函数。 例如,定义一个函数Lastnode_post(p)来找到子树p后序遍历中的最后一个节点,即该子树的根节点自己。因为后序遍历的顺序是左、右、根,所以无论左或右子树如何,最后一个节点都是根节点。因此,如果节点p有右孩子,那么其前驱应该是右子树的后序最后一个节点,也就是右子树的根节点。但是,如果右子树存在,则其根节点的后序是最后访问的,所以前驱是右子树的根节点。例如: 节点p的右子树是R,那么R的后序遍历顺序是R的左子树、R的右子树、R。所以R的最后一个访问节点是R自己。因此,不管R是否有子树,其后序最后一个节点都是R自己。所以当p有右子树时,前驱是R自己。同理,如果p没有右子树但有左子树L,则前驱是L自己。 因此,正确的算法可能是: 当p->ltag == 1: 前驱是p->lchild。 否则: 如果p->rtag == 0(存在右孩子): 前驱是右孩子。 否则: 前驱是左孩子。 这可能是一个简的算法,但需要验证是否正确。 例如,考虑节点p有右孩子R,R没有子树。那么p的后序顺序是R -> p。所以p的前驱是R,正确。 如果R有左孩子RL和右孩子RR,那么后序顺序是RL -> RR -> R -> p。p的前驱是R,而R的前驱是RR?或者根据后序的顺序,整个右子树的后序最后访问的是R自己,所以p的前驱是R。是的,因此,不管右子树的结构如何,p的前驱都是其右孩子R。这可能正确,因为后序中右子树的所有节点都在R之后访问,而R本身是在p之前访问的。所以,当存在右孩子时,p的前驱就是右孩子。 同理,如果没有右孩子但有左孩子,前驱是左孩子。 这可能是一个合理的结论,因此前驱查找算法可以这样实现。 对于后继节点: 根据后序顺序,根节点是最后访问的,所以一个节点的后继通常是其父节点,但具体情况要看该节点是父节点的左还是右孩子。 例如,如果节点p是父节点f的右孩子,那么f就是p的后继。如果p是f的左孩子,且f有右孩子s,那么p的后继是s的后序第一个节点。而s的后序第一个节点是s的左子树的最左节点,如果存在的话,否则是s的右子树的最左节点,或者s自己。 不过,这需要父指针的支持。根据引用2中的内容,后序线索二叉树找后继需要父指针,否则无法直接找到。因此,算法可能如下: 当存在父指针时: 1. 如果p是父节点的右孩子,则后继是父节点。 2. 如果p是父节点的左孩子: a. 如果父节点有右孩子,则后继是父节点右子树的后序第一个节点。 b. 如果父节点没有右孩子,则后继是父节点。 如何找到父节点右子树的后序第一个节点?后序遍历的第一个节点是该子树的最左叶子节点,或者如果没有左子树,则是最右叶子的左叶子,或者直接该子树的左子树的最左节点? 例如,父节点的右子树的后序第一个节点应该是该右子树的左子树的最左节点吗?或者后序的第一个节点是左子树的最左节点,然后是右子树的最左节点,最后是根? 例如,假设父的右子树是S: S的结构可能有左子树L和右子树R。后序遍历顺序是L -> R -> S。所以后序的第一个节点是L的最左叶子。如果没有左子树,则后序第一个节点是R的最左叶子。如果没有左右子树,则是S自己。 因此,要找到后序第一个节点,可能需要从S出发,一直向左下找,直到某个节点没有左孩子,然后查看其右子树是否存在,继续向左下找,类似中序的第一个节点? 不过,后序的第一个节点应该是最左边的叶子节点。例如,对于子树S,后序顺序的第一个节点是S的最左叶子节点,前提是存在左子树。否则,如果有右子树,则第一个节点是右子树的最左叶子。否则,就是S自己。 这可能比较复杂,因此,如果没有父指针,无法高效找到后继,只能通过从根开始遍历。 综上,回答用户的问题时,需要分两部分: 前驱节点的查找较为直接,可以通过线索或子节点判断;而后继节点的查找需要父指针的支持,或者遍历整个树。 现在,根据上述分析,整理回答: 后序线索二叉树的前驱查找: 1. 若当前结点左指针为线索(p->ltag == 1),直接返回左指针指向的结点。 2. 若存在右子树(p->rtag == 0),则右孩子即为前驱。 3. 否则(只有左子树),左孩子即为前驱。 而后继的查找: 1. 若结点是根结点,无后继。 2. 通过父指针判断: a. 若是父结点的右孩子,父结点即后继。 b. 若是父结点的左孩子: i. 父结点存在右子树:后继为父结点右子树的后序第一个结点(即该子树的最左下方结点,若存在左子树则持续向左,否则检查右子树)。 ii. 父结点无右子树:父结点即后继。 若没有父指针,则无法高效确定后继,需从根开始后序遍历查找。 参考用户提供的引用,引用3中提到中序线索二叉树的前驱查找方法,可能类似地,后序的前驱查找可用类似逻辑。而引用2指出后序线索二叉树找后继没有直接方法,需父指针。 因此,实现代码可能需要如下: 前驱查找函数(假设有三叉链表,含父指针): // 后序线索二叉树找前驱 ThreadNode* PostPredecessor(ThreadNode* p) { if (p->ltag == 1) { // 左指针是线索 return p->lchild; } else { if (p->rtag == 0) { // 存在右孩子 return p->rchild; } else { // 只有左孩子 return p->lchild; } } } 后继查找函数(需父指针): // 后序线索二叉树找后继 ThreadNode* PostSuccessor(ThreadNode* p) { if (p->parent == NULL) { // 根节点无后继 return NULL; } // 如果是父的右孩子 if (p == p->parent->rchild) { return p->parent; } else { // 是父的左孩子 if (p->parent->rtag == 0) { // 父有右孩子 // 找到父右子树的后序第一个结点 ThreadNode* q = p->parent->rchild; while (q->ltag == 0 || q->rtag == 0) { if (q->ltag == 0) { // 优先左子树 q = q->lchild; } else { // 否则右子树 q = q->rchild; } } return q; } else { // 父无右孩子 return p->parent; } } } 但这里可能有误,因为后序的第一个结点不一定是叶子结点。例如,父的右子树的第一个被后序访问的结点是该子树的最左叶子结点,如果存在的话。例如,对于子树S,后序访问顺序是左、右、S,所以第一个结点是左子树的最左结点,如果左子树存在的话。否则是右子树的左结点,依此类推。因此,可能需要找到该子树的最左叶子结点,类似于中序中的第一个结点的查找方法。 或者,后序的第一个结点应该是该子树的最深左结点,如果有的话。例如: 找到后序第一个结点的函数可能如下: ThreadNode* Firstnode_post(ThreadNode* p) { while (p->ltag == 0 || p->rtag == 0) { if (p->ltag == 0) { p = p->lchild; } else { p = p->rchild; } } return p; } 这样,父的右子树的后序第一个结点是找到最左或最下的结点。这可能不正确,需要验证。 例如,假设父的右子树结构如下: A / \ B C / D 后序顺序为 B -> D -> C -> A 所以后序的第一个结点是B。而按照上述函数,初始p=A,检查左孩子是否存在,如果存在则移动到B。B的左右tag都是1,所以返回B。正确。 另一个例子,父的右子树是C,没有左孩子,只有右孩子D。后序顺序是 D -> C。所以第一个结点是D。函数中,p=C,检查左tag为1,然后检查右tag为0,移动到D。D的左右tag都是1,返回D。正确。 因此,这个函数可以正确找到后序的第一个结点。所以,在找后继时,当父有右孩子时,后继是父右子树的第一个结点。 因此,修改后的后继查找函数: ThreadNode* PostSuccessor(ThreadNode* p) { if (p->parent == NULL) { return NULL; } // 如果是父的右孩子 if (p == p->parent->rchild) { return p->parent; } else { // 是父的左孩子 if (p->parent->rtag == 0) { // 父有右孩子 return Firstnode_post(p->parent->rchild); } else { // 父无右孩子 return p->parent; } } } 其中Firstnode_post函数如上。 总结,用户的问题答案应包括: 前驱查找方法: - 左线索存在时直接取左指针。 - 否则,若有右子树取右孩子,否则取左孩子。 后继查找方法: - 需要父指针。 - 若是父的右孩子,后继是父。 - 若是父的左孩子,父有右孩子则后继是父右子树的后序第一个节点,否则后继是父。 此外,需说明没有父指针时的限制。 现在根据这些分析,编写正式回答。</think>在后序线索二叉树中,查找前驱和后继节点的实现需要结合后序遍历的特点和线索指针的标记规则。以下是具体的算法实现和逻辑分析: --- ### **一、后序线索二叉树的前驱查找** 后序遍历顺序为 **左子树→右子树→根节点**,前驱节点即后序遍历序列中的直接前驱。 #### **算法实现** 1. **左指针为线索时**(`p->ltag == 1`) 直接返回左线索指向的节点。 2. **左指针为子树时**(`p->ltag == 0`) - 若存在右子树(`p->rtag == 0`):前驱为右子树的根节点(右孩子)。 - 若无右子树(`p->rtag == 1`):前驱为左子树的根节点(左孩子)。 **代码示例**: ```c ThreadNode* PostPredecessor(ThreadNode* p) { if (p->ltag == 1) { // 左指针为线索 return p->lchild; } else { if (p->rtag == 0) { // 存在右子树 return p->rchild; } else { // 只有左子树 return p->lchild; } } } ``` #### **逻辑验证** - **示例1**:节点是叶子节点(无左右子树),其前驱由线索直接给出。 - **示例2**:节点有右子树,后序遍历中右子树的根节点是其直接前驱[^1]。 --- ### **二、后序线索二叉树的后继查找** 后继节点即后序遍历序列中的直接后继。由于后序的根节点在最后,后继查找需依赖**父指针**(三叉链表结构)。 #### **算法实现** 1. **若节点是父的右孩子**: 后继为父节点。 2. **若节点是父的左孩子**: - 若父节点有右子树:后继为父节点右子树的**后序第一个节点**(最左下方节点)。 - 若父节点无右子树:后继为父节点。 **辅助函数**(查找子树的后序第一个节点): ```c ThreadNode* FirstPostNode(ThreadNode* p) { while (p->ltag == 0 || p->rtag == 0) { // 优先向左下方搜索 if (p->ltag == 0) p = p->lchild; else p = p->rchild; } return p; } ``` **代码示例**: ```c ThreadNode* PostSuccessor(ThreadNode* p) { if (p->parent == NULL) { // 根节点无后继 return NULL; } if (p == p->parent->rchild) { // 是父的右孩子 return p->parent; } else { // 是父的左孩子 if (p->parent->rtag == 0) { // 父有右子树 return FirstPostNode(p->parent->rchild); } else { // 父无右子树 return p->parent; } } } ``` #### **逻辑验证** - **示例1**:节点是父的右孩子,后继为父节点(符合后序顺序)。 - **示例2**:节点是父的左孩子且父有右子树,后继为右子树的最左下方节点[^2]。 --- ### **三、关键总结** | 操作 | 条件 | 方法 | |-----------|--------------------------|----------------------------------------------------------------------| | **前驱** | 左指针为线索 | 直接取左线索指向的节点 | | | 左指针为子树且有右子树 | 前驱为右子树的根节点 | | | 左指针为子树且无右子树 | 前驱为左子树的根节点 | | **后继** | 节点是父的右孩子 | 后继为父节点 | | | 节点是父的左孩子 | 后继为父的右子树的最左下方节点(若存在)或父节点(若父无右子树)[^3] | ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值