数学题+二分
题目意思就是说 有一个长为L的杆,受热后变为弧形求原杆中点到圆边的距离。
我们可以知道弧度S= 圆心角r,圆心角=2θ,所以我的得到S =2*θ*r ,之后θ=arcsin(l/2r)
r = (l^2+4h^2)/8*h;
之后我们又得到了公式的S,我们就可以通过二分答案h来得出弧长,判断是否与公式得出的弧长相等即可。
#include <iostream>
#include <algorithm>
#include <string>
#include <math.h>
#include <string.h>
#include <stdio.h>
#define ll long long
#define maxs 202020
#include <iomanip>
#define inf 0x7f7f7fff
#define eps 1e-8
#define mme(i,j) memset(i,j,sizeof(i))
using namespace std;
int main()
{
double n,c,l;
while(cin>>l>>n>>c)
{
if( (n+l+c)<0)
break;
double s;
s = (1+n*c)*l;//公式得出弧长
double h,left=0.0,high=l;//边界
double tmp,mid,r;
while(left+eps<high)
{
mid =(left+high)/2.0;//二分答案h
r = (l*l+4*mid*mid)/(8*mid);//公式得到半径r
tmp = 2*r*asin(l/(2*r));//三角恒等变形得到的弧长
if(tmp<s)//小于公式得出的准确弧长时说明 h小了
left=mid;
else
high=mid;//h大了
}
h=mid;
cout<<fixed<<setprecision(3)<<h<<endl;
}
return 0;
}