关于大数据,你应该知道的50个专业术语

 如果你刚接触大数据,你可能会觉得这个领域很难以理解,无从下手。不过,你可以从下面这份包含了 25 个大数据术语的清单入手,那么我们开始吧。   算法(Algorithm):算法可以理解成一种数学公式或用于进行数据分析的统计学过程。那么,「算法」又是何以与大数据扯上关系的呢?要知道,尽管算法...

2019-05-05 16:15:07

阅读数 1991

评论数 1

大数据到底在用什么姿势塑造我们?

从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户「口味」的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。   元数据(Metadata)的概念   简单说,元数据是对数据本身进行描述的数据,它不是对象本身,它只描述对象的属性。   比如,一幅...

2019-05-09 14:27:30

阅读数 79

评论数 0

大数据入门的四个必备常识

一、大数据分析的五个基本方面   1、可视化分析   大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。   2、...

2019-05-09 14:25:02

阅读数 183

评论数 0

大数据,为什么不是传统BI的简单升级?

BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。   大数据(Big Data),指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集...

2019-05-09 14:23:14

阅读数 89

评论数 0

大数据主流工具,你知道几个?

业内有这样一种说法,SQL虽然在大数据分析领域久经考验,但是无奈长江后浪推前浪,和炙手可热的Hadoop相比,SQL已经过时了。这个说法有点言过其实,现在很多的项目都是将Hadoop作为数据存储,然后利用SQL进行前端查询。这说明Hadoop需要一种高级查询语言的支持。 Hadoop MapRed...

2019-05-09 14:22:13

阅读数 95

评论数 0

大数据分析思路的4点心得

 大数据分析能力对于一名产品经理来说是最基本的能力。 在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产品优化;校招的面试官可能会问小伙伴们关于分析数据的思维;在产品经理的日常工作当中,要时长盯着数据的报表来分析产品的健康程度。本文不再...

2019-05-05 16:18:14

阅读数 325

评论数 0

如何让隐藏在大数据背后的价值发挥出来?

  对于普通人来说,大数据离我们的生活很远,但它的威力已无所不在:信用卡公司追踪客户信息,能迅速发现资金异动,并向持卡人发出警示;能源公司利用气象数据分析,可以轻松选定安装风轮机的理想地点;瑞典首都斯德哥尔摩使用运算程序管理交通,令市区拥堵时间缩短一半……这些都与大数据有着千丝万缕的关系。 ...

2019-05-05 16:17:06

阅读数 82

评论数 0

大数据如何使用

  对于普通人来说,大数据离我们的生活很远,但它的威力已无所不在:信用卡公司追踪客户信息,能迅速发现资金异动,并向持卡人发出警示;能源公司利用气象数据分析,可以轻松选定安装风轮机的理想地点;瑞典首都斯德哥尔摩使用运算程序管理交通,令市区拥堵时间缩短一半……这些都与大数据有着千丝万缕的关系。 ...

2019-05-05 16:16:07

阅读数 80

评论数 0

从大数据到人工智能 我们还有多远要走?

 从广义上讲,人工智能的应用已经非常广泛,各大新闻客户端会根据你的阅读兴趣推送相关新闻、各大电商平台会根据你的购买习惯推送相关商品、几乎所有你浏览的网页所呈现的广告都与你的历史搜索相关……这些都可以称得上是人工智能。而且,与过去60年人工智能的发展主要集中在实验室里不同,新一轮的人工智能已经在诸多...

2019-05-05 16:13:56

阅读数 101

评论数 0

大数据发展的问题与机遇

 最大的问题不是大数据本身,而是我们如何使用它。   大数据时代已经到来,它将颠覆一个个行业,使世界格局发生重大变化。这些年来,政府和各行各业的广泛支持和重视,使得大数据市场一直快速发展。然而,这是不是就意味着大数据会迅速横扫各行业,渗透到社会的方方面面,把我们在梦里或者科幻电影里见到的画面变成现...

2019-05-04 13:08:25

阅读数 190

评论数 3

后Hadoop时代的大数据技术思考:数据即服务

 1. Hadoop 的神话正在破灭   IBM leads BigInsights for Hadoop out behind barn. Shots heard   IBM has announced the retirement of the basic plan for its data ...

2019-05-04 13:07:20

阅读数 355

评论数 3

大数据可视化——5个必须知道的工具

人们常说,数据是组织的生命线。然而,解析这些数据并有效地使用仍然是一个挑战。   假设拥有一个巨大的金矿,但不能使用。那么,作为一个金矿的拥有者有什么用呢?大数据的情况与之相似。专家认为,如果企业不能分析数据来获得有用的信息,那么收集大量的数据就没有用处。   要解决这个问题,企业需要的关键武器是...

2019-05-04 13:05:46

阅读数 283

评论数 0

数据中心,云计算,大数据之间有什么区别和联系?

 不少人把数据中心、云计算数据中心、大数据搞混淆,觉得这三者是一样的产品,其实有显着地区别,数据中心机房是一整套复杂的设施,如今,云计算即将成为信息社会的公共资源,而数据中心则是支撑云计算服务的基础设施,所以自从云计算横空出世,一切信息技术都开始围着它转,云计算有如神一样地存在着,下面看看数据中心...

2019-05-04 13:04:03

阅读数 3535

评论数 0

大数据处理为何选择Spark,而不是Hadoop

  Spark是一个用来实现快速而通用的集群计算的平台。在速度方面,Spark扩展了广泛使用的MapReduce计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。  一.基础知识  1.Spark   Spark是一个用来实现快速而通用的集群计算的平台。   在速度方面,Spark扩展...

2019-05-04 13:02:32

阅读数 192

评论数 0

大数据时代的10个重大变革

大数据时代的到来正在改变人们的生活方式、思维模式和研究范式,我们可以总结出10个重大变革。  NO.1   目标驱动型 → 数据驱动   决策方式   传统科学思维中,决策制定往往是“目标”或“模型”驱动的——根据目标(或模型)进行决策。然而,大数据时代出现了另一种思维模式,即数据驱动型决策,数据...

2019-05-04 13:01:31

阅读数 362

评论数 0

玩转大数据可视化的几个必会工具

 俗话说的好,逆水行舟,不进则退,在快速发展的今天,紧跟时代的步伐,抓住时代的脉搏,才能助力企业激流勇进,抢占先机。作为助力企业经营决策的大数据可视化应用,对于的企业发展起着至关重要的作用,但是如何利用大数据可视化,如何做好大数据可视化,今天小编就给大家介绍几款实用的工具,帮助大家在大数据的海洋里...

2019-05-04 13:00:07

阅读数 92

评论数 0

科普帖:五分钟快速了解大数据及其必备技能

  当前,整个互联网正在从IT时代向DT时代演进,大数据技术也正在助力企业和公众敲开DT世界大门。虽然大数据潮流在默默的推进各种变革,但您真的了解大数据么?  大数据定义   一般而言,大数据是指数量庞大而复杂,传统的数据处理产品无法在合理的时间内捕获、管理和处理的数据集合。   这些大数据集可以...

2019-05-04 12:58:39

阅读数 112

评论数 0

大数据在云端的应用需要改变IT技能集

 如今,企业不断将大数据工作负载转移到云端。虽然此举并不需要彻底改变IT技能,但它确实需要对管理和开发团队进行一些更改。   而对于采用大数据来打包云计算,企业的团队为此准备好了吗?   即使企业在自己的数据中心内采用大数据,也不一定意味着他们将在云中取得成功。而且在大多数情况下,必须...

2019-05-04 12:57:13

阅读数 108

评论数 0

Hadoop进入寒冬期,崛起的会是Spark吗?

如果Hadoop开始进入寒冬期,率先崛起的会是呼声最高的Spark吗?   笔者曾经看过一个非常有趣的比喻,Hadoop是第一家大型包工队,可以组织一大堆人合作(HDFS)搬砖盖房(用MapReduce),但是速度比较慢。   Spark是另一家包工队,虽然成立得晚一些,但是他们搬砖很快很灵活,可...

2019-05-04 12:56:14

阅读数 95

评论数 0

大数据入门与实战-Spark上手

1 Spark简介 1.1 引言 行业正在广泛使用Hadoop来分析他们的数据集。原因是Hadoop框架基于简单的编程模型(MapReduce),它使计算解决方案具有可扩展性,灵活性,容错性和成本效益。在这里,主要关注的是在查询之间的等待时间和运行程序的等待时间方面保持处理大型数据集的速度。...

2019-05-03 12:43:46

阅读数 35

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭