dijkstra(堆优化)算法代码+理解

### 堆优化 使用情况(n和m一个级别的时候)
```
#include<bits/stdc++.h>
#define PII pair<int,int>// first存距离,second存起点
using namespace std;
const int N = 5e5+10;
int h[N],e[N],w[N],ne[N],idx;//邻接表存图
int n,m,s;//节点数,边数,起点
int dist[N];//每个点到起点的距离
bool st[N];//记录每个点到起点的距离是否已经确定
void add(int a,int b,int c)
{
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
   //参考单链表的插入方式,在头部插入
}
void dijkstra()
{
    memset(dist,0x3f,sizeof dist);//将所有节点设为无穷大
    dist[s] = 0;//起点到自己的距离为0
    priority_queue<PII,vector<PII>,greater<PII>> q;//建一个小根堆,堆头就是目前离起点最近的点,且复杂度客观
    q.push({0,s});//将起点入堆
    while(q.size())//队列不空时不断循环
    {
        auto t = q.top();//将队首取出
        q.pop();//弹出队首
        int ver = t.second;//记录队首的节点编号
        if(st[ver]) continue;//如果已经确认过最短距离了就不用再更新了
        st[ver]=true;//将状态设为已更新
        for(int i = h[ver];i!=-1;i=ne[i])//遍历点ver 的所有出边
        {
            int j = e[i];//记录边i的终点j
            if(dist[j]>dist[ver]+w[i])//如果距离更小则更新
            {
                dist[j] = dist[ver]+w[i];
                q.push({dist[j],j});//将这个更新过的点入队,因为队列中存的是离起点近的点,如果没有被更新一定没有队列里的小
            }
        }
    }
}
int main()
{
    memset(h,-1,sizeof(h));//将邻接表头初始化
    cin>>n>>m>>s;
    while(m--)//读入每一条边
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    dijkstra();
    for(int i = 1;i<=n;i++)
    {
        if(dist[i]==0x3f3f3f3f)                         cout<<(1<<31)-1<<" ";
        else cout<<dist[i]<<" ";
    }
    return 0;
 } 
 ```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值