算法第二次作业

Floyd
通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。矩阵P中的元素b[i][j],表示顶点i到顶点j经过了b[i][j]记录的值所表示的顶点。

假设图G中顶点个数为N,则需要对矩阵D和矩阵P进行N次更新。初始时,矩阵D中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞,矩阵P的值为顶点b[i][j]的j的值。 接下来开始,对矩阵D进行N次更新。第1次更新时,如果”a[i][j]的距离” > “a[i][0]+a[0][j]”(a[i][0]+a[0][j]表示”i与j之间经过第1个顶点的距离”),则更新a[i][j]为”a[i][0]+a[0][j]”,更新b[i][j]=b[i][0]。 同理,第k次更新时,如果”a[i][j]的距离” > “a[i][k-1]+a[k-1][j]”,则更新a[i][j]为”a[i][k-1]+a[k-1][j]”,b[i][j]=b[i][k-1]。更新N次之后,完成。


#include <stdio.h>  
 
#define NUMS 12   
#define INF 65535
 
typedef struct  
{   
    	char vertex[NUMS];   
    	int edges[NUMS][NUMS];   
    	int n,e;   
}Graph;   
 
void Dispath(int A[][NUMS],int path[][NUMS],int n); 
 
void ReadGraph(Graph *G)   
{   
	int i,j;
	FILE * fp = fopen("floyd.txt","rw");
	G->n = NUMS;
	G->e = NUMS * NUMS; 
	for(i=0; i<NUMS; i++)
	{
		for(j=0; j<NUMS; j++)
		{
			fscanf(fp,"%d",&(G->edges[i][j]));
			printf("%d \t",G->edges[i][j]);			
		}
		printf("\n");
	}
}   
 
void Floyd(Graph G)
{
	int A[NUMS][NUMS],path[NUMS][NUMS];
	int i,j,k;
	for (i=0;i<G.n;i++)
	{
		for (j=0;j<G.n;j++)
		{
			A[i][j]=G.edges[i][j];
			path[i][j]=-1;
		}
	}
	for (k=0;k<G.n;k++)
	{
		for (i=0;i<G.n;i++)
		{
			for (j=0;j<G.n;j++)
			{
				if (A[i][j]>A[i][k]+A[k][j])
				{
					A[i][j]=A[i][k]+A[k][j];
					path[i][j]=k;
				}
			}
		}
	}
	Dispath(A,path,G.n);
}
 
void Ppath(int path[][NUMS],int i,int j)
{
	int k;
	k=path[i][j];
	if (k==-1)
	{
		return;
	}
	Ppath(path,i,k);
	printf("%d,",k + 1);
	Ppath(path,k,j);
}
 
void Dispath(int A[][NUMS],int path[][NUMS],int n)
{
	int i,j;
	for (i=0;i<n;i++)
	{
		for (j=0;j<n;j++)
		{
			if (A[i][j]==INF)
			{
				if (i!=j)
				{
					printf("从%d到%d没有路径\n",i+1,j+1);
				}
			}
			else
			{
				printf(" 从%d 到 %d => 最短路径长度为 : %d , 路径站点为 :",i+1,j+1,A[i][j]);
				printf("%d,",i + 1);
				Ppath(path,i,j);
				printf("%d\n",j + 1);
			}
		}
	}
}
 
int main()
{
	Graph G;
	ReadGraph(&G);
	Floyd(G);
	return 0;
}

Dijkstra:
1.将图上的初始点看作一个集合S,其它点看作另一个集合
2.根据初始点,求出其它点到初始点的距离d[i] (若相邻,则d[i]为边权值;若不相邻,则d[i]为无限大)
3.选取最小的d[i](记为d[x]),并将此d[i]边对应的点(记为x)加入集合S
4.再根据x,更新跟 x 相邻点 y 的d[y]值:d[y] = min{ d[y], d[x] + 边权值w[x][y] },因为可能把距离调小,所以这个更新操作叫做松弛操作。
5.重复3,4两步,直到目标点也加入了集合,此时目标点所对应的d[i]即为最短路径长度。

void dijkstra(Graph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // 

    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;              
        prev[i] = 0;              
        dist[i] = G.matrix[vs][i];
    }

    flag[vs] = 1;
    dist[vs] = 0;

    for (i = 1; i < G.vexnum; i++)
    {
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        flag[k] = 1;

        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }


    printf("dijkstra(%c): \n", G.vexs[vs]);
    for (i = 0; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值