质数与约数

本文介绍了如何使用试除法判定质数、分解质因数的方法,以及埃氏筛法和线性筛法快速找出小于给定数n的质数。同时讨论了计算数的约数个数和最大公约数的公式。
摘要由CSDN通过智能技术生成

1、质数的判定——试除法

bool is_prime(int n) {
	if (n < 2) return false;

	//for循环中写成 i * i <= n 可能会造成溢出
	for (int i = 2; i <= n / i; i++) {
		if (n % i == 0) 
			return false;
	}
	return true;
}

2、分解质因数——试除法

void divide(int n) {
	//n最多有一个大于sqrt(n)的质因数
	for (int i = 2; i <= n / i; i++) {
		if (n % i == 0) {
			int s = 0;
			while (n % i == 0) {
				n /= i;
				s++;
			}
			cout << i << "^" << s << endl;
		}
	}
	if (n > 1) cout << n << "^" << 1;
	return;
}

3、筛质数——埃氏筛法、线性筛法(较快)

//埃氏筛法
void get_primes(int n) {
	//把所有小于等于n的质数放到v中
	vector<int> v, st(n + 1);
	for (int i = 2; i <= n; i++) {
		if (!st[i]) {
			v.push_back(i);
			for (int j = i + i; j <= n; j += i) st[j] = 1;
		}
	}
	return;
}
//线性筛法
void get_primes(int n) {
	vector<int> v, st(n + 1);
	//把所有小于等于n的质数放到v中
	for (int i = 2; i <= n; i++) {
		if (!st[i]) v.push_back(i);
		for (int j = 0; v[j] <= n / i; j++) {
			st[v[j] * i] = 1;
			if (i % v[j] == 0) break;
		}
	}
	return;
}

线性筛法:

        每一个合数只会被自己的最小质因子筛掉。

        当i % v[j] == 0时,说明v[j]是i的最小质因数,同时也说明v[j]是v[j] * i的最小质因数。

        当i % v[j] != 0时,说明v[j]比i的最小质因数小,则说明了v[j]是v[j] * i的最小质因数。

        一个合数a的最小质因子是b,则当i枚举到a / b时,a就会被筛掉,所以每个合数都会被筛掉。

        

1、一个数的约数个数

将一个数n质因数分解,若结果为n = p1^a + p2^b + p3^c,则n的约数个数为(a + 1)*(b + 1)*(c + 1)

2、一个数的所有约数的和

=(p1^0 + p1^1 +……+p1^a)*(p2^0 + p2^1 +……+p2^b)*(p3^0 + p3^1 +……+p3^c)

3、两数最大公约数:欧几里得算法 

a和b的最大公约数等于b和a % b的最大公约数(a > b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云儿乱飘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值