1、质数的判定——试除法
bool is_prime(int n) {
if (n < 2) return false;
//for循环中写成 i * i <= n 可能会造成溢出
for (int i = 2; i <= n / i; i++) {
if (n % i == 0)
return false;
}
return true;
}
2、分解质因数——试除法
void divide(int n) {
//n最多有一个大于sqrt(n)的质因数
for (int i = 2; i <= n / i; i++) {
if (n % i == 0) {
int s = 0;
while (n % i == 0) {
n /= i;
s++;
}
cout << i << "^" << s << endl;
}
}
if (n > 1) cout << n << "^" << 1;
return;
}
3、筛质数——埃氏筛法、线性筛法(较快)
//埃氏筛法
void get_primes(int n) {
//把所有小于等于n的质数放到v中
vector<int> v, st(n + 1);
for (int i = 2; i <= n; i++) {
if (!st[i]) {
v.push_back(i);
for (int j = i + i; j <= n; j += i) st[j] = 1;
}
}
return;
}
//线性筛法
void get_primes(int n) {
vector<int> v, st(n + 1);
//把所有小于等于n的质数放到v中
for (int i = 2; i <= n; i++) {
if (!st[i]) v.push_back(i);
for (int j = 0; v[j] <= n / i; j++) {
st[v[j] * i] = 1;
if (i % v[j] == 0) break;
}
}
return;
}
线性筛法:
每一个合数只会被自己的最小质因子筛掉。
当i % v[j] == 0时,说明v[j]是i的最小质因数,同时也说明v[j]是v[j] * i的最小质因数。
当i % v[j] != 0时,说明v[j]比i的最小质因数小,则说明了v[j]是v[j] * i的最小质因数。
一个合数a的最小质因子是b,则当i枚举到a / b时,a就会被筛掉,所以每个合数都会被筛掉。
1、一个数的约数个数
将一个数n质因数分解,若结果为n = p1^a + p2^b + p3^c,则n的约数个数为(a + 1)*(b + 1)*(c + 1)
2、一个数的所有约数的和
=(p1^0 + p1^1 +……+p1^a)*(p2^0 + p2^1 +……+p2^b)*(p3^0 + p3^1 +……+p3^c)
3、两数最大公约数:欧几里得算法
a和b的最大公约数等于b和a % b的最大公约数(a > b)