n次方差(当n∈R时)

最近写作业时遇到

作为数学萌新的我属实没能很快解决,于是我便试着照搬n次方差公式试一下

公式点这

然而我只是单纯的把n替换成了对应的1/n,结果就是还是没能得出想要的结果。

最后看了答案,再进行反推时,得出一个粗略的n分之一次方差公式

a-b=(a^{\frac{1}{n}}-b^{\frac{1}{n}})\times (a^{\frac{n-1}{n}}+a^{\frac{n-2}{n}}b^{\frac{1}{n}}+a^{\frac{n-3}{n}}b^{\frac{2}{n}}+\cdot \cdot \cdot \cdot +a^{\frac{1}{n}}b^{\frac{n-2}{n}}+b^{\frac{n-1}{n}})

本来以为这是特殊的n次方差公式,可在网上怎么也找不到

但我定睛一看,发现原式可以这么变,就可以通用了↓

a^{\frac{n}{m}}-b^{\frac{n}{m}}=(a^{\frac{1}{m}}-b^{\frac{1}{m}})\times (a^{\frac{n-1}{m}}+a^{\frac{n-2}{m}}b^{\frac{1}{m}}+a^{\frac{n-3}{m}}b^{\frac{2}{m}}+\cdot \cdot \cdot \cdot +a^{\frac{1}{m}}b^{\frac{n-2}{m}}+b^{\frac{n-1}{m}})

这个我在网上也是找了很久没找到(可能是我的检索关键词不对吧),反正我就先发在这了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值