GMM

GMM

0x00. 简介

高斯混合模型是具有如下形式的概率分布模型:

P(y|θ)=k=1Kαkϕ(y|θk)

其中 αk 是系数, αk0 并且 k=1Kαk=1 ϕ(y|θk) 是高斯分布密度, θk=(μk,σ2k) ,由K个分模型构成


0x01. 高斯混合模型参数估计的EM算法

我们的目的是用EM算法估计高斯混合模型的参数 θ , 其中 θ=(α1,α2,...,αk;θ1,θ2,...,θk)

a). 明确隐变量,写出complete data的对数似然函数

设想观测数据是这样产生的:首先依据概率选择高斯分布分模型,然后依据该分模型的参数生成观测数据。其中生成的数据是可以被观测到的,但是该数据来自哪一个分模型的信息是未知的。

我们定义隐变量:

γjk={1,0,jkotherwisej=1,2,...,N; k=1,2,..,K

对于一个观测数据 yi ,我们的完全数据是

(yj,γj1,γj2,...,γjK),j=1,2,...,N
我们便可以得到完全数据的似然函数

b). E步:确定Q函数

Q函数的含义:完全数据的对数似然函数的期望。关于未观测数据Z的条件概率分布的期望。也就是说,Z的取值有很多种,我们先确定下来Z,然后再根据Z和当次迭代的 θ 的值算出来Z和Y(观测数据)的期望,目的是在下一步最大化这个期望。

c). M步:最大化Q
对于得到的Q函数,我们求其对于 θ 的最大值,即求新一轮迭代的模型参数:

θ(i+1)=argmaxθQ(θ,θ(i))

对于我们要求的三组参数,我们直接对其求偏导或者求其在约束条件下的偏导即可。在这个过程中,Q函数的表达式可能不会被显式计算。


0x02. 总结

### 关于高斯混合模型回归的实现与应用 #### 实现细节 在机器学习领域,高斯混合模型(Gaussian Mixture Model, GMM)与回归相结合形成了一种强大的工具——高斯混合回归(Gaussian Mixture Regression, GMR),用于处理复杂的数据集并从中提取有价值的信息。具体来说,在这种组合中,聚类部分采用GMM来识别数据的不同簇;而针对每一个簇内的样本,则运用线性或者非线性的回归分析来进行预测建模[^2]。 对于实际编程实现方面,`gmr`库提供了一个Python接口以方便开发者快速搭建基于GMM的回归系统。该库不仅支持标准的训练流程,还允许用户自定义参数设置以及调整模型结构,从而更好地适配特定应用场景下的需求[^1]。 ```python from gmr import GMM # 初始化具有指定组件数量的GMM对象 model = GMM(n_components=3) # 训练模型 X_train = ... # 输入特征矩阵 y_train = ... # 输出目标向量 data = np.column_stack((X_train, y_train)) model.from_samples(data) # 进行预测 X_test = ... predicted_y = model.predict(X_test) ``` #### 应用场景 当面对那些存在明显子群体特性的多模式分布时,比如机器人学中的动作模仿任务或是金融市场的趋势预测等问题,GMM回归能够发挥其独特的优势。通过先对原始观测值执行软分配至各个潜在类别之下再分别建立局部映射关系的方式,使得整体框架既保留了全局视角又兼顾到了细粒度变化规律[^4]。 此外,由于GMM本质上属于一种生成式的统计方法论范畴,因此除了上述提到的传统意义上的监督式学习之外,还可以进一步拓展应用于无标签条件下探索未知世界内部联系的任务当中去,例如异常检测、密度估计等领域均可见到此类技术的身影[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值