GMM

GMM

0x00. 简介

高斯混合模型是具有如下形式的概率分布模型:

P(y|θ)=k=1Kαkϕ(y|θk)

其中 αk 是系数, αk0 并且 k=1Kαk=1 ϕ(y|θk) 是高斯分布密度, θk=(μk,σ2k) ,由K个分模型构成


0x01. 高斯混合模型参数估计的EM算法

我们的目的是用EM算法估计高斯混合模型的参数 θ , 其中 θ=(α1,α2,...,αk;θ1,θ2,...,θk)

a). 明确隐变量,写出complete data的对数似然函数

设想观测数据是这样产生的:首先依据概率选择高斯分布分模型,然后依据该分模型的参数生成观测数据。其中生成的数据是可以被观测到的,但是该数据来自哪一个分模型的信息是未知的。

我们定义隐变量:

γjk={1,0,jkotherwisej=1,2,...,N; k=1,2,..,K

对于一个观测数据 yi ,我们的完全数据是

(yj,γj1,γj2,...,γjK),j=1,2,...,N
我们便可以得到完全数据的似然函数

b). E步:确定Q函数

Q函数的含义:完全数据的对数似然函数的期望。关于未观测数据Z的条件概率分布的期望。也就是说,Z的取值有很多种,我们先确定下来Z,然后再根据Z和当次迭代的 θ 的值算出来Z和Y(观测数据)的期望,目的是在下一步最大化这个期望。

c). M步:最大化Q
对于得到的Q函数,我们求其对于 θ 的最大值,即求新一轮迭代的模型参数:

θ(i+1)=argmaxθQ(θ,θ(i))

对于我们要求的三组参数,我们直接对其求偏导或者求其在约束条件下的偏导即可。在这个过程中,Q函数的表达式可能不会被显式计算。


0x02. 总结

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
### 关于高斯混合模型回归的实现与应用 #### 实现细节 在机器学习领域,高斯混合模型(Gaussian Mixture Model, GMM)与回归相结合形成了一种强大的工具——高斯混合回归(Gaussian Mixture Regression, GMR),用于处理复杂的数据集并从中提取有价值的信息。具体来说,在这种组合中,聚类部分采用GMM来识别数据的不同簇;而针对每一个簇内的样本,则运用线性或者非线性的回归分析来进行预测建模[^2]。 对于实际编程实现方面,`gmr`库提供了一个Python接口以方便开发者快速搭建基于GMM的回归系统。该库不仅支持标准的训练流程,还允许用户自定义参数设置以及调整模型结构,从而更好地适配特定应用场景下的需求[^1]。 ```python from gmr import GMM # 初始化具有指定组件数量的GMM对象 model = GMM(n_components=3) # 训练模型 X_train = ... # 输入特征矩阵 y_train = ... # 输出目标向量 data = np.column_stack((X_train, y_train)) model.from_samples(data) # 进行预测 X_test = ... predicted_y = model.predict(X_test) ``` #### 应用场景 当面对那些存在明显子群体特性的多模式分布时,比如机器人学中的动作模仿任务或是金融市场的趋势预测等问题,GMM回归能够发挥其独特的优势。通过先对原始观测值执行软分配至各个潜在类别之下再分别建立局部映射关系的方式,使得整体框架既保留了全局视角又兼顾到了细粒度变化规律[^4]。 此外,由于GMM本质上属于一种生成式的统计方法论范畴,因此除了上述提到的传统意义上的监督式学习之外,还可以进一步拓展应用于无标签条件下探索未知世界内部联系的任务当中去,例如异常检测、密度估计等领域均可见到此类技术的身影[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值