GMM
0x00. 简介
高斯混合模型是具有如下形式的概率分布模型:
P(y|θ)=∑k=1Kαkϕ(y|θk)
其中 αk 是系数, αk≥0 并且 ∑k=1Kαk=1 , ϕ(y|θk) 是高斯分布密度, θk=(μk,σ2k) ,由K个分模型构成
0x01. 高斯混合模型参数估计的EM算法
我们的目的是用EM算法估计高斯混合模型的参数 θ , 其中 θ=(α1,α2,...,αk;θ1,θ2,...,θk)
a). 明确隐变量,写出complete data的对数似然函数
设想观测数据是这样产生的:首先依据概率选择高斯分布分模型,然后依据该分模型的参数生成观测数据。其中生成的数据是可以被观测到的,但是该数据来自哪一个分模型的信息是未知的。
我们定义隐变量:
γjk={1,0,第j个观测数据来自第k个分模型otherwisej=1,2,...,N; k=1,2,..,K
对于一个观测数据 yi ,我们的完全数据是
(yj,γj1,γj2,...,γjK),j=1,2,...,N
我们便可以得到完全数据的似然函数
b). E步:确定Q函数
Q函数的含义:完全数据的对数似然函数的期望。关于未观测数据Z的条件概率分布的期望。也就是说,Z的取值有很多种,我们先确定下来Z,然后再根据Z和当次迭代的 θ 的值算出来Z和Y(观测数据)的期望,目的是在下一步最大化这个期望。
c). M步:最大化Q
对于得到的Q函数,我们求其对于
θ
的最大值,即求新一轮迭代的模型参数:
θ(i+1)=argmaxθQ(θ,θ(i))
对于我们要求的三组参数,我们直接对其求偏导或者求其在约束条件下的偏导即可。在这个过程中,Q函数的表达式可能不会被显式计算。