GMM

GMM

0x00. 简介

高斯混合模型是具有如下形式的概率分布模型:

P(y|θ)=k=1Kαkϕ(y|θk)

其中 αk 是系数, αk0 并且 k=1Kαk=1 ϕ(y|θk) 是高斯分布密度, θk=(μk,σ2k) ,由K个分模型构成


0x01. 高斯混合模型参数估计的EM算法

我们的目的是用EM算法估计高斯混合模型的参数 θ , 其中 θ=(α1,α2,...,αk;θ1,θ2,...,θk)

a). 明确隐变量,写出complete data的对数似然函数

设想观测数据是这样产生的:首先依据概率选择高斯分布分模型,然后依据该分模型的参数生成观测数据。其中生成的数据是可以被观测到的,但是该数据来自哪一个分模型的信息是未知的。

我们定义隐变量:

γjk={1,0,jkotherwisej=1,2,...,N; k=1,2,..,K

对于一个观测数据 yi ,我们的完全数据是

(yj,γj1,γj2,...,γjK),j=1,2,...,N
我们便可以得到完全数据的似然函数

b). E步:确定Q函数

Q函数的含义:完全数据的对数似然函数的期望。关于未观测数据Z的条件概率分布的期望。也就是说,Z的取值有很多种,我们先确定下来Z,然后再根据Z和当次迭代的 θ 的值算出来Z和Y(观测数据)的期望,目的是在下一步最大化这个期望。

c). M步:最大化Q
对于得到的Q函数,我们求其对于 θ 的最大值,即求新一轮迭代的模型参数:

θ(i+1)=argmaxθQ(θ,θ(i))

对于我们要求的三组参数,我们直接对其求偏导或者求其在约束条件下的偏导即可。在这个过程中,Q函数的表达式可能不会被显式计算。


0x02. 总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值