**
第一章 Hive基本概念
**
1.1什么是hive
hive是基于hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
本质是:将HQL转化为mapreduce程序,如下图所示:
(1)hive处理的数据存储在HDFS
(2)hive分析数据底层的实现是MapReduce
(3)执行程序运行在yarn上
1.2hive的优缺点
1.2.1 优点
(1)操作接口采用类SQL语法,提供快速开发的能力
(2)避免了去写MapReduce,减少开发人员的学习成本
(3)hive的执行延迟比较高,因此hive常用于数据分析,对实时性要求不高的场合
(4)hive优势在于处理大数据,对于处理小数据没有优势,因为hive执行延迟高
(5)hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
1.2.2 缺点
(1)HQL表达能力有限,迭代式算法无法表达,数据挖掘方面不擅长
(2)效率低,hive自动生成的MapReduce作业,通常情况下不够智能化;hive调优比较困难,粒度较粗。
1.3hive与数据仓库对比
查询语言:类SQL,唯一的相似点;
数据存储位置:hdfs,本地系统;
数据更新:hive读多写少,mysql增删改查;
索引:hive不支持索引,暴力扫描整个数据;
执行:通过hadoop提供的MapReduce来实现,数据库通常有自己的执行引擎;
执行延迟:hive高延迟;
可扩展性:hive的可扩展性好;数据规模:hive数据规模大吖。
第二章 hive安装
略。。。
备注:尚学堂大数据之hive 学习笔记