- 博客(385)
- 收藏
- 关注
原创 速看如何跑赢碎片化时代的流量竞速
我们持续孵化剪辑创意,使AI进化为垂直领域的“高级剪辑师”,实现1个IP的多样化内容裂变,助力新热IP宣发与片库二次消费。基于综艺题材差异,打造匹配其核心看点的多样化速看形式,推出如适合音综节目的“副歌速看”、适合语言类节目的“金句速看”、搞笑类“灵魂画手速看”等,精准凸显各品类特色,显著提升内容辨识度与社交传播力。速看AI剪辑给出了答案:依托“大星罗”智能分析技术,将长内容解构、重组,自动生成节奏紧凑、卖点突出的短视频合集,满足爱奇艺用户高效、多样化观剧需求。如何让长内容在短平快的流量池里精准“种草”?
2026-02-05 12:01:07
345
转载 创新高! 2025年爱奇艺申请发明专利880件 过半是AI相关专利
其中,技术团队通过大模型能力绘制出整部剧本的互动戏份、情感互动关系、冗余支线等曲线,通过曲线走势反映人物互动和故事节奏,找出节奏拖沓或转折突兀等剧情潜在问题,并可直观量化识别信息冗余、悬疑案件质量、情感浓度等,率先实现了高精度快速剧本剧情评估。但在高质量漫剧的生产过程中,基于现有大模型的“生图”“生视频”等功能,通常只关注片段内的语义正确性或人场道一致性,对时长较长的视频进行一致性控制成为制作的难点。日,首家爱奇艺乐园将在扬州开门迎客,用户即可体验到沉浸式“一秒入戏”的超级娱乐体验。
2026-01-24 12:35:36
38
转载 <span class=“js_title_inner“>创新高! 2025年爱奇艺申请发明专利880件 过半是AI相关专利</span>
其中,技术团队通过大模型能力绘制出整部剧本的互动戏份、情感互动关系、冗余支线等曲线,通过曲线走势反映人物互动和故事节奏,找出节奏拖沓或转折突兀等剧情潜在问题,并可直观量化识别信息冗余、悬疑案件质量、情感浓度等,率先实现了高精度快速剧本剧情评估。但在高质量漫剧的生产过程中,基于现有大模型的“生图”“生视频”等功能,通常只关注片段内的语义正确性或人场道一致性,对时长较长的视频进行一致性控制成为制作的难点。日,首家爱奇艺乐园将在扬州开门迎客,用户即可体验到沉浸式“一秒入戏”的超级娱乐体验。
2026-01-24 12:35:36
15
转载 <span class=“js_title_inner“>创新高! 2025年爱奇艺申请发明专利880件 过半是AI相关专利</span>
其中,技术团队通过大模型能力绘制出整部剧本的互动戏份、情感互动关系、冗余支线等曲线,通过曲线走势反映人物互动和故事节奏,找出节奏拖沓或转折突兀等剧情潜在问题,并可直观量化识别信息冗余、悬疑案件质量、情感浓度等,率先实现了高精度快速剧本剧情评估。但在高质量漫剧的生产过程中,基于现有大模型的“生图”“生视频”等功能,通常只关注片段内的语义正确性或人场道一致性,对时长较长的视频进行一致性控制成为制作的难点。日,首家爱奇艺乐园将在扬州开门迎客,用户即可体验到沉浸式“一秒入戏”的超级娱乐体验。
2026-01-24 12:35:36
9
原创 从Kafka到AutoMQ:爱奇艺实时流数据架构演进
随后,公司引入公有云服务并最终切换至基于存算分离架构的AutoMQ,利用其单副本存储和秒级弹性的特性,显著提升了系统的灵活性。随着规模增长,传统私有云Kafka在弹性、成本与治理上逐渐遇到瓶颈,因此,流数据存储架构从“管集群”转向“管数据”,并通过Stream平台与Stream-SDK实现解耦与统一治理。云端的块存储和对象存储本身具备多副本特性,已在存储层保证了高可用,因此AutoMQ内部的Topic均采用单副本策略,避免传统Kafka中Broker之间的副本同步开销,大幅降低成本与数据复制压力。
2026-01-08 12:03:07
782
原创 <span class=“js_title_inner“>从Kafka到AutoMQ:爱奇艺实时流数据架构演进</span>
随后,公司引入公有云服务并最终切换至基于存算分离架构的AutoMQ,利用其单副本存储和秒级弹性的特性,显著提升了系统的灵活性。随着规模增长,传统私有云Kafka在弹性、成本与治理上逐渐遇到瓶颈,因此,流数据存储架构从“管集群”转向“管数据”,并通过Stream平台与Stream-SDK实现解耦与统一治理。云端的块存储和对象存储本身具备多副本特性,已在存储层保证了高可用,因此AutoMQ内部的Topic均采用单副本策略,避免传统Kafka中Broker之间的副本同步开销,大幅降低成本与数据复制压力。
2026-01-08 12:03:07
390
原创 爱奇艺多桌面端统一:Mac客户端架构升级实践
但是,C++代码一开始并未考虑到适应多操作系统的需求,因此直接耦合依赖了很多Windows系统的API和能力,要更容易地复用尽可能多的C++代码,需要升级代码架构,对代码进行合理的拆分和解耦,最终实现理想的最大化代码复用的效果。相比之下,将Windows端由C++开发的播放器核心逻辑移植到MacOS,不仅能复用已有的JS Bridge接口、节省开发投入,更有利于由PC团队统一维护和未来跨平台的业务逻辑共享,同时推动了播放器底层架构的优化与解耦,为多端协同奠定了长远基础。看似任务很艰巨,但是得益于。
2025-11-13 09:01:40
821
原创 让AI编程的价值可追踪、可量化--「AI编程效能量化系统」
缺乏统一的度量体系和方法,我们难以区分AI写的代码和人工编写的代码,难以客观评估AI投入的实际产出,更无法系统化地优化使用策略。但是这些对话散落在每个开发者的本地环境中,无法统一管理与共享,查看AI生成代码时经常因为没有当时生成的上下文而一头雾水。“让AI编程可追踪、可量化,通过自动记录与分析,助力团队清晰度量AI价值,提升产能。结合GitLab提交数据,我们可以和AI生成的代码做对比,就可以精确计算出AI生成代码占比。我们在阅读AI生成的代码时,不仅关注代码本身,更希望了解当时与AI交互的上下文。
2025-11-06 09:17:32
946
原创 告别“玄学”创作,AI重塑微短剧全链路生产方案
它不是要取代你的创意,而是要将你从繁琐、重复的“剪辑体力活”中解放出来,让你把宝贵的时间和精力,重新投入到真正的创意、故事和情感本身。这意味着,当竞争对手还在焦急等待剧集上线才能开始剪辑时,你已经手握海量的营销素材,“万事俱备,只欠东风”。在微短剧的世界里,时间就是生命线,只需要上传任意剧集视频,AI直接火力全开,全自动理解所有需要的底层数据,并自动批量完成多策略爆款衍生视频,真正的实现统一时间直接完成一文多发。有了这个大脑,AI不再是冰冷的机器,而是一个真正“看懂”了微短剧,并且知道观众想看什么的专家。
2025-10-30 09:01:42
631
原创 <span class=“js_title_inner“>告别“玄学”创作,AI重塑微短剧全链路生产方案</span>
它不是要取代你的创意,而是要将你从繁琐、重复的“剪辑体力活”中解放出来,让你把宝贵的时间和精力,重新投入到真正的创意、故事和情感本身。这意味着,当竞争对手还在焦急等待剧集上线才能开始剪辑时,你已经手握海量的营销素材,“万事俱备,只欠东风”。在微短剧的世界里,时间就是生命线,只需要上传任意剧集视频,AI直接火力全开,全自动理解所有需要的底层数据,并自动批量完成多策略爆款衍生视频,真正的实现统一时间直接完成一文多发。有了这个大脑,AI不再是冰冷的机器,而是一个真正“看懂”了微短剧,并且知道观众想看什么的专家。
2025-10-30 09:01:42
476
原创 <span class=“js_title_inner“>告别“玄学”创作,AI重塑微短剧全链路生产方案</span>
它不是要取代你的创意,而是要将你从繁琐、重复的“剪辑体力活”中解放出来,让你把宝贵的时间和精力,重新投入到真正的创意、故事和情感本身。这意味着,当竞争对手还在焦急等待剧集上线才能开始剪辑时,你已经手握海量的营销素材,“万事俱备,只欠东风”。在微短剧的世界里,时间就是生命线,只需要上传任意剧集视频,AI直接火力全开,全自动理解所有需要的底层数据,并自动批量完成多策略爆款衍生视频,真正的实现统一时间直接完成一文多发。有了这个大脑,AI不再是冰冷的机器,而是一个真正“看懂”了微短剧,并且知道观众想看什么的专家。
2025-10-30 09:01:42
493
原创 盘活数据资产,驱动价值释放:数据仓库与 ChatBI 的融合之道
的宏观实现流程可概括为意图理解、数据开发、测试三步,但为提升准确性,实际落地时需对各环节进行细化拆解,结合多轮校验与智能体协作保障效果。流程,将 “意图理解 - 数据开发 - 测试” 拆分为多个小环节,每个环节单独校验,定位具体问题,而非笼统归咎于模型。术语时,不立即生效,而是创建新版本,仅跑与改动相关的用例(无需全量跑),根据评估报告决定是否上线,避免影响历史功能。维度向量分开存储,避免相互干扰,提升召回效率;:按需选择大小模型,非核心环节用小模型,核心环节用大模型,平衡性能与成本;
2025-10-16 12:01:08
489
原创 <span class=“js_title_inner“>盘活数据资产,驱动价值释放:数据仓库与 ChatBI 的融合之道</span>
的宏观实现流程可概括为意图理解、数据开发、测试三步,但为提升准确性,实际落地时需对各环节进行细化拆解,结合多轮校验与智能体协作保障效果。流程,将 “意图理解 - 数据开发 - 测试” 拆分为多个小环节,每个环节单独校验,定位具体问题,而非笼统归咎于模型。术语时,不立即生效,而是创建新版本,仅跑与改动相关的用例(无需全量跑),根据评估报告决定是否上线,避免影响历史功能。维度向量分开存储,避免相互干扰,提升召回效率;:按需选择大小模型,非核心环节用小模型,核心环节用大模型,平衡性能与成本;
2025-10-16 12:01:08
995
原创 基于StarRocks释放天玑买量数据价值
注意图中红色部分,如果优化师的问题,需要多种数据源的结果,如需要mysql和CK中的数据,那我们需要召回mysql、CK两种不同数据库的函数,这会使上下文增加,如果涉及更复杂的查询上下文还会继续增加。由于CK的联表查询本身性能孱弱,我们将OLAP的方案转向了SR,而且碰巧BabelX实时数据同步的发布能够解决大量表的数据同步难以维护的问题,我们将CK替换为SR,将MySQL外表替换为SR内表,这样我们就可以在SR里完成全部的查询,基于其强大的联表查询性能,我们的投放列表性能也有了新的突破。
2025-09-11 09:00:55
869
原创 <span class=“js_title_inner“>基于StarRocks释放天玑买量数据价值</span>
注意图中红色部分,如果优化师的问题,需要多种数据源的结果,如需要mysql和CK中的数据,那我们需要召回mysql、CK两种不同数据库的函数,这会使上下文增加,如果涉及更复杂的查询上下文还会继续增加。由于CK的联表查询本身性能孱弱,我们将OLAP的方案转向了SR,而且碰巧BabelX实时数据同步的发布能够解决大量表的数据同步难以维护的问题,我们将CK替换为SR,将MySQL外表替换为SR内表,这样我们就可以在SR里完成全部的查询,基于其强大的联表查询性能,我们的投放列表性能也有了新的突破。
2025-09-11 09:00:55
593
原创 <span class=“js_title_inner“>基于StarRocks释放天玑买量数据价值</span>
注意图中红色部分,如果优化师的问题,需要多种数据源的结果,如需要mysql和CK中的数据,那我们需要召回mysql、CK两种不同数据库的函数,这会使上下文增加,如果涉及更复杂的查询上下文还会继续增加。由于CK的联表查询本身性能孱弱,我们将OLAP的方案转向了SR,而且碰巧BabelX实时数据同步的发布能够解决大量表的数据同步难以维护的问题,我们将CK替换为SR,将MySQL外表替换为SR内表,这样我们就可以在SR里完成全部的查询,基于其强大的联表查询性能,我们的投放列表性能也有了新的突破。
2025-09-11 09:00:55
779
原创 会员业务预防系统腐化的探索与实践
结果跟踪模块负责生成各个系统的评分质量报告,并通过邮件将这些质量报告发送给各个系统的负责人,确保相关人员及时了解系统状态以便进行整改和跟踪,并且提供相关的数据接口供外部系统使用,从而支持其他团队进行更深入的分析和应用。巡检记录模块用于汇总各个系统在不同评价指标上的评分,得出该系统的总体评分以及对应的评分等级,并将这些数据持久化,从而有助于追踪系统评分的变化,支持主动化运维。巡检系统通过提供一套统一的技术标准,帮助各团队维持一致的技术方向,从而解决由于标准缺乏而导致的各团队技术方向分散问题。
2025-08-14 13:31:06
1034
原创 <span class=“js_title_inner“>会员业务预防系统腐化的探索与实践</span>
结果跟踪模块负责生成各个系统的评分质量报告,并通过邮件将这些质量报告发送给各个系统的负责人,确保相关人员及时了解系统状态以便进行整改和跟踪,并且提供相关的数据接口供外部系统使用,从而支持其他团队进行更深入的分析和应用。巡检记录模块用于汇总各个系统在不同评价指标上的评分,得出该系统的总体评分以及对应的评分等级,并将这些数据持久化,从而有助于追踪系统评分的变化,支持主动化运维。巡检系统通过提供一套统一的技术标准,帮助各团队维持一致的技术方向,从而解决由于标准缺乏而导致的各团队技术方向分散问题。
2025-08-14 13:31:06
903
原创 金融数据入湖实践
2024 年 10 月,我们收到了BabelX 实时版(基于Flink CDC 开发的实时数据同步工具, 提供yaml和图形化的DAG配置)的调研问卷,经过进一步的沟通了解,我们基于 BabelX 实时版展开方案试用。有效解决了上述问题,通过引入delete file记录需要删除的行数据,在不重写原有文件的前提下,实现了行数据的更新与删除。通过DBIO将多个数据库的数据实时同步至采用TokuDB引擎的MySQL集群,依靠TokuDB引擎较为出色的数据压缩比例, 承担了业务数据的归档和历史数据的查询分析。
2025-08-07 12:01:03
1285
原创 <span class=“js_title_inner“>金融数据入湖实践</span>
2024 年 10 月,我们收到了BabelX 实时版(基于Flink CDC 开发的实时数据同步工具, 提供yaml和图形化的DAG配置)的调研问卷,经过进一步的沟通了解,我们基于 BabelX 实时版展开方案试用。有效解决了上述问题,通过引入delete file记录需要删除的行数据,在不重写原有文件的前提下,实现了行数据的更新与删除。通过DBIO将多个数据库的数据实时同步至采用TokuDB引擎的MySQL集群,依靠TokuDB引擎较为出色的数据压缩比例, 承担了业务数据的归档和历史数据的查询分析。
2025-08-07 12:01:03
370
原创 喜报!爱奇艺AI团队三篇论文被顶会录用
01#摘要近日,ACL 2025和INTERSPEECH 2025正式公布了论文录用名单,爱奇艺AI团队共有3篇研究成果入选,其中ACL 2篇(主会1篇,Findings1篇),INTERSPEECH 1篇。相信产研同学对这两大顶会及其含金量一定不陌生!ACL(国际计算语言学年会,简称ACL)是由国际计算语言学协会主办的学术盛会,是计算语言学和自然语言处理领域国际排名第一的顶级国际学术会议,在中国计算机学会(CCF)推荐会议列表中被列为 A 类会议。据统计,今年第63届ACL总投稿数高达8000多篇,创历史
2025-07-03 12:02:02
929
原创 爱奇艺奇境-基于零信任的泛测试环境
但当我们跳出传统视角会发现,测试已不仅是质量保障部门的专属职责,而是渗透到每个岗位的工作流中——研发工程师要验证代码逻辑的缜密性,运营团队需预演活动流程的健壮性,产品经理要确认规划功能的完整性等等。可以说,在追求敏捷迭代的现代科技企业,测试已从可选项进化为研发流程的必选项,成为每个岗位必备的"质量验证"机制。它像拼乐高一样把所有零散的测试环节整合成一套标准流程,既治好了我们的“强迫症”,又让所有乱七八糟的测试需求从此有了同一个入口、同一种语言,为所有测试和验证需求打造了标准化接入门户。
2025-06-12 12:01:29
1160
原创 爱奇艺大数据异构计算实践
在私有云环境中,机型较为单一,此问题不明显,但在大规模使用公有云异构机型时,长期的性能追踪和评估,更有利于对需求、性能和成本进行把控,及时发现并处理性能缓慢恶化的情况。我们通过工具扫描线上 Jar 任务,发现不兼容率达到 10%。由于公有云厂商有大量可供选择的机型,为了提高选型效率,我们制定了统一的准入标准对机型进行粗筛,并使用可复现的标准化性能测试用例来进行量化评估,通过后再进行生产负载性能量化评估,最终形成机型性能评估报告,再结合机器价格计算出机器的性价比,来决策机型的选择。
2025-05-15 12:01:16
1292
原创 混合云场景下基于Anycast网络建设内网DNS服务
如上图所示,将云下的Anycast DNS IP绑定到LB上,统一内网全网的DNS 服务IP,LB后端挂载真正的DNS服务器,这样模拟实现类似于Anycast的架构,具备统一服务IP,容灾、切换、高可用等部分Anycast能力特征。DNS服务与网络服务,是构建上层业务应用必备的基础底座服务。为了解决这一问题,实现混合云场景下的DNS服务大统一,爱奇艺联合公有云厂商共同设计了新的网络方案,成功将Anycast DNS扩展至公有云,把云下的Anycast DNS搬到了云上,本文即介绍这一方案的实现。
2025-04-24 12:03:25
1163
原创 助力用户增长数据可视化分析:天玑个性化数据大盘
天玑个性化数据看板是一套通用的可视化前端解决方案,通过一套通用的可视化看板组件,业务可以结合具体的业务场景及数据进行可视化数据展现,集成在业务系统本身,降低业务系统开发定制化数据看板的门槛,个性化数据大盘目前已在大陆用户增长买量和种草业务以及海外用户增长的投放和种草业务落地。灵活的配置方式,多样性的数据组件,大大提高了业务的数据分析效率,便于及时调整相关买量及种草策略。通过在无代码平台,根据用户对组件的各种配置,如下图是具体的组件搭建配置界面,主要也是包括了数据和样式的配置,和DSL整体的设计相契合。
2025-04-10 12:03:15
1832
原创 实时数仓2.0:更低的成本获取更及时的数据
两条数据处理链路在逻辑上重复,尤其是数据清洗和处理过程中的重叠部分,需要分别在实时和离线链路中执行,造成了不必要的资源消耗和代码维护上的复杂性;播放时长的体现从结束播放切换到心跳流,有效支持用户播放数据的更快反馈,后续可以支持用户行为标签和模型的实时更新、特征和推荐模型的实时更新,以及支持更为广泛灵活的用户运营方式。这一转型不仅将日均PB级数据的处理成本削减60%,更通过分钟级近实时化改造,将原本小时级或天级更新的数据升级为分钟级近实时化数据,显著提升业务响应速度与决策效率。同时也能保证数据的安全性。
2025-03-27 12:05:34
1220
原创 服务性能防腐体系:基于自动化压测的熔断机制
01#背景在系统架构的演进过程中,项目初始阶段都会通过压力测试构建安全护城河,此时的服务性能与资源水位保持着黄金比例关系。然而在业务高速发展时期,每个冲刺周期都被切割成以业务需求为单位的开发单元,压力测试逐渐从必选项退化为奢侈品,使得系统在每一次需求迭代中都积累着架构熵增的风险。当技术债务突破系统弹性阈值时,系统可能会出现各种问题,最终威胁到商业价值的可持续转化(见下图业务增长和系统稳定性的关系...
2025-03-13 13:30:41
1135
原创 爱奇艺的接口治理与自动化测试一体化解决方案实践
01#背景随着云原生和微服务架构的普及,公司许多服务也转向了微服务模式,以满足业务的高速发展和高流量调用需求。然而,微服务的拆分导致API数量的爆发式增长,使得接口管理和接口质量保障的问题更加凸显,具体体现在以下几个方面:1.1 缺少低成本的接口管理方案查找成本高:由于没有统一的平台来管理接口,接口信息分散在不同的工具或平台上,如wiki、YAPI、Gitbook、Swagger等。跨团队项目时...
2025-02-13 13:30:39
778
原创 奇智:生成式 AI 应用创建平台
01#引言奇智平台是为构建生成式AI原生应用而设计的生成式AI应用创建平台,通过奇智平台,我们可以将复杂的技术任务大幅简化,还能通过可视化编排构建各种类型的应用,让创意和创新更快、更好、更易实现。我们小时候都玩过积木,通过堆砌各种颜色和形状的积木,可以构建出城堡、飞机、甚至整个城市。现在,如果有一个数字世界的积木,我们就可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我...
2025-01-09 13:31:01
1202
原创 TOP 100Summit 主题分享 | AI助力爱奇艺项目管理实践
12月5-7日,第13届 TOP 100全球软件案例研究峰会(简称TOP 100 Summit)顺利落幕。本届峰会以“面向未来的组织演进与创新管理”为主题,100位顶尖研发团队负责人及业界专家到场参与深度案例剖析,共同探讨在大模型时代下,组织如何适应时代发展趋势实现转型升级。爱奇艺项目管理团队分享了AI技术在项目管理中的应用,总结了实践经验,助力业务高效增长。01#引言随着业务的发展,项目经理...
2024-12-19 13:31:03
876
原创 会员后台基于LiteFlow的低代码实践
01#背景随着会员业务的发展,基于商品、订单、权益的中台体系逐渐成形,可以快速支持业务的创新探索,如果业务模式可行,功能就会落地到配置后台。虽然业务模式多样化,但业务的配置后台都需要调用中台通用的配置接口,比如:商品、价格、库存、活动等配置,在规则的组装上就出现了重复定制开发的问题。为了解决这类问题,我们尝试了从传统瀑布流开发模式转变到流程引擎模式的探索,本文分享一下实践经验,希望能够给大家带...
2024-12-05 13:30:45
1250
原创 QECon主题分享 | 价值交付的进阶探索与实践之道
10月25-26日,第十二届QECon全球质量效能大会在北京站顺利落幕,本届大会适逢1024程序员节,以"AI赋能,驱动质量与效能共生进化"为核心主题,吸引了数千名技术从业者齐聚一堂,共同探讨AI如何塑造软件研发的未来。爱奇艺项目管理团队分享了《价值交付的进阶探索与实践之道》,介绍了聚焦价值交付的进阶探索与实践之道,助力业务高效增长。以下是主题分享的内容整理:01#引言在数字化高速发展的背景下...
2024-11-28 13:30:40
1226
原创 Alluxio 在爱奇艺大数据的实践
01#导言Alluxio 是一款开源分布式数据编排系统,它介于存储与计算之间,提供了分布式缓存、全局数据访问等能力,为跨集群大数据分析、AI 训练等场景提供数据加速服务。Alluxio 提供统一的客户端 API 和全局命名空间,使应用程序能够通过一个通用接口连接到多种存储系统,解决了数据访问延迟和存储系统兼容性的问题。图 1 Alluxio 架构在爱奇艺,我们主要利用 Alluxio 的分布式...
2024-11-21 13:30:12
1442
原创 爱奇艺基于多模态的台词说话人识别技术
01#背景影视剧剧本涵盖了整部剧的文本描述,包括台词及其说话人信息,对了解剧情有关键作用。然而,长视频平台上线的视频历经各种改版和剪辑处理,相应的剧本信息已缺失,台词说话人识别技术由此产生。台词说话人识别技术指的是从一集长视频里提取并识别不同说话人片段的技术,该技术能够实现对海量长视频内容的结构化管理,具备广泛的应用价值,例如在高光剧情检测业务中,台词说话人识别结果作为输入,送入多模态大模型...
2024-11-07 13:30:40
1853
1
原创 爱奇艺奇异果TV端基于营销位结构框架下的全链路营销位提效
01#背景营销位是精细化人群配置信息展示的位置,主要用于营销活动宣传和新功能推广,是TV触达用户的核心手段。以下是APK营销位示意:本项目启动之前,TV端营销位由各个页面的产品单独维护,并未形成统一的规范,导致营销位的配置、需求响应和验证低效,无法适配TV端业务飞速发展的业务诉求。因此,TV端从2024年Q1启动营销位优化专项,实现营销位在配置-开发-验收的全链路环节的效率提升。02#旧营...
2024-10-31 12:02:28
1339
原创 爱奇艺大数据多 AZ 统一调度架构
01#导语爱奇艺大数据技术广泛应用于运营决策、用户增长、广告分发、视频推荐、搜索、会员营销等场景,为公司的业务增长和用户体验提供了重要的数据驱动引擎。多年来,随着公司业务的发展,爱奇艺大数据平台已积累了海量数据,这些数据分散在多个AZ(AvailabilityZone,可用区)的多个大数据集群里,彼此割裂、不互通,存在数据孤岛,给数据使用带来了极大的不便。业务使用数据时,需要知道数据在哪个...
2024-10-24 13:30:54
1880
原创 在线深度学习:爱奇艺效果广告分钟级模型优化
01# 背景在效果广告投放场景中,媒体侧需要准确衡量每次请求的价值,模型预估值在广告竞价中扮演着核心角色。模型预估精度的提升,是改善媒体侧变现效率、提升广告收益的核心技术驱动力。此前,爱奇艺效果广告预估模型为小时级模型,从广告投放到效果反馈线上模型有数个小时的延迟。从23年下半年开始,我们致力于从模型时效性优化的方向提升模型能力,将小时级模型升级为分钟级在线深度学习(ODL),在爱奇艺流量取得了...
2024-10-10 13:30:29
1260
原创 AI技术在爱奇艺视频搜索中的应用
当前AI技术已经全面在爱奇艺搜索引擎中落地应用。与传统搜索仅能查找片名不同,爱奇艺的AI搜索功能让用户能够在搜索阶段使用更多模糊信息获得想找的影片。首次将生成式AI技术应用于角色搜索、剧情搜索、明星搜索、奖项搜索和语义搜索五大场景。通过对模糊搜索query的精准理解提供了多样化的内容推荐,使用户能够通过几个简单的关键词,快速找到与影视剧密切相关的热门角色、经典剧情场景和明星阵容等内容,标志着找片和...
2024-09-26 13:30:51
2134
原创 会员业务出口网关的设计与实现
01#背景介绍1.1 出口网关是什么出口网关(Egress Gateway)是一种部署在云或企业网络中的网络组件,它控制着从内部网络(如企业内网、内部微服务网络)流出到外部网络(如公共互联网或其他外部服务)的流量。一般来说,出口网关是内部服务与外界交互的一个流量出口,实现对外请求的协议转换、流控、监控等通用功能。相比于传统的入口网关(Ingress Gateway),出口网关侧重于对出站流...
2024-09-19 13:30:13
1674
原创 爱奇艺广告智能算力探索与实践
01#背景随着广告业务的发展,流量、订单、模型复杂度快速增长,算力消耗也愈加严重。同时我们也注意到,流量质量参差不齐,投入更多的计算资源呈现了边际效益递减的效应。如何平衡流量收益和计算资源成本成为了广告业务发展无法规避的挑战。爱奇艺广告引擎团队从22年开始探索并实践智能算力在广告场景中的应用,旨在实现一定算力约束下业务收益的最大化。目前我们在链路重要环节实现了包括流量价值预估、弹性淘汰、动...
2024-09-12 12:00:29
1297
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅