题目链接: P1535 [USACO08MAR]Cow Travelling S
BFS解题思路: 因为要统计次数,不能简单地跳过一个被经过的点,(注意这点我们不是要求达到某个点的最短时间,而是求次数,所以我们不可以跳过这个点,比如说如果案例的时间改为10,那么我们求出的次数一定要小于真正的答案)。可是这样的话,状态量会爆炸。所以我们可以采用记忆化设dp[i][j][k]表示在第k分钟到达点(i,j)的方案数,以地点+时间作为状态。避免同一状态被反复拓展。这样,状态量将减少至最多100* 100* 15。这就比较显然了。对于将被拓展的状态**,在计数时加上当前状态的方案数(比如说我到达点(4,5)现在的方案有3种,那么到达(5,5)的方案是不是要加上到达点(4,5)现在的方案)。如果这个状态曾被拓展,就不要别的操作了。否则,将这一状态入队,预备拓展其他状态。
剪枝:当一个点到达终点的诺曼顿距离小于现在剩余的时间,直接continue。
bool check(int x,int y,int time) {
if (t - (abs(ex - x) + abs(ey - y)+time) <0 ) {
return false;
}
return true;
}
代码:
#include<iostream>
#include<queue>
#include<cmath>
using namespace std;
const int maxn = 1000;
const int dx[] = { 1,0,-1,0 };
const int dy[] = { 0,1,0,-1 };
struct Node {
int x, y, time;
Node(int a, int b, int c) {
x = a, y = b, time =c;
}
};
int sx, sy, ex, ey,n,m,t,vis[maxn][maxn][100],ans;
char map[maxn][maxn];
struct cmp
{
bool operator() (Node a, Node b) {
return a.time > b.time;
}
};
bool isValid(int x,int y) {
if (x<1 || x>n || y<1 || y>m) {
return 0;
}
return 1;
}
bool check(int x,int y,int time) {
if (t - (abs(ex - x) + abs(ey - y)+time) <0 ) {
return false;
}
return true;
}
priority_queue<Node, vector<Node>, cmp> q;
void BFS(int x, int y, int time) {
q.push(Node(x, y, time));
vis[x][y][time] = 1;
while (!q.empty()) {
Node temp = q.top();
q.pop();
for (int i = 0; i < 4; i++) {
int tx = temp.x + dx[i];
int ty = temp.y + dy[i];
if (vis[tx][ty][temp.time + 1]) {
vis[tx][ty][temp.time + 1] += vis[temp.x][temp.y][temp.time];
continue;
}
if (!isValid(tx, ty) || map[tx][ty] == '*' || temp.time+1>t) {
continue;
}
vis[tx][ty][temp.time + 1] += vis[temp.x][temp.y][temp.time];
q.push(Node(tx, ty, temp.time + 1));
}
}
}
int main() {
cin >> n >> m >> t;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> map[i][j];
}
}
cin >> sx >> sy >> ex >> ey;
BFS(sx, sy, 0);
cout << vis[ex][ey][t] << endl;
}