洛谷—P1535 [USACO08MAR]Cow Travelling S 题解

该博客详细解析了USACO竞赛中的P1535题目,重点介绍了使用BFS(广度优先搜索)解决Cow Travelling问题的思路。文章指出,由于需要计算到达每个点的次数而非最短时间,因此不能简单跳过已访问点。通过设立dp[i][j][k]表示在第k分钟到达点(i,j)的方案数,实现了状态记忆化以降低复杂度。在拓展状态时,若已计算过则不再重复,并对可能的无效状态进行剪枝,如点到终点的诺曼顿距离小于剩余时间。博客最后给出了相关的代码实现。" 118187798,6674261,C++ STL详解与位运算常见应用,"['C++', 'STL', '位运算', '数据结构', '算法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接: P1535 [USACO08MAR]Cow Travelling S
BFS解题思路: 因为要统计次数,不能简单地跳过一个被经过的点,(注意这点我们不是要求达到某个点的最短时间,而是求次数,所以我们不可以跳过这个点,比如说如果案例的时间改为10,那么我们求出的次数一定要小于真正的答案)。可是这样的话,状态量会爆炸。所以我们可以采用记忆化设dp[i][j][k]表示在第k分钟到达点(i,j)的方案数,以地点+时间作为状态避免同一状态被反复拓展。这样,状态量将减少至最多100* 100* 15。这就比较显然了。对于将被拓展的状态**,在计数时加上当前状态的方案数(比如说我到达点(4,5)现在的方案有3种,那么到达(5,5)的方案是不是要加上到达点(4,5)现在的方案)。如果这个状态曾被拓展,就不要别的操作了。否则,将这一状态入队,预备拓展其他状态。
剪枝:当一个点到达终点的诺曼顿距离小于现在剩余的时间,直接continue。

bool check(int x,int y,int time) {
	if (t - (abs(ex - x) + abs(ey - y)+time) <0 ) {
		return false;
	}
	return true;
}

代码:

#include<iostream>
#include<queue>
#include<cmath>
using namespace std;
const int maxn = 1000;
const int dx[] = { 1,0,-1,0 };
const int dy[] = { 0,1,0,-1 };
struct Node {
	int x, y, time;
	Node(int a, int b, int c) {
		x = a, y = b, time =c;
	}
};
int sx, sy, ex, ey,n,m,t,vis[maxn][maxn][100],ans;
char map[maxn][maxn];
struct cmp
{
	bool operator() (Node a, Node b) {
		return a.time > b.time;
	}
};
bool isValid(int x,int y) {
	if (x<1 || x>n || y<1 || y>m) {
		return 0;
	}
	return 1;
}
bool check(int x,int y,int time) {
	if (t - (abs(ex - x) + abs(ey - y)+time) <0 ) {
		return false;
	}
	return true;
}
priority_queue<Node, vector<Node>, cmp> q;
void BFS(int x, int y, int time) {
	q.push(Node(x, y, time));
	vis[x][y][time] = 1;
	while (!q.empty()) {
		Node temp = q.top();
		q.pop();
		for (int i = 0; i < 4; i++) {
			int tx = temp.x + dx[i];
			int ty = temp.y + dy[i];
			if (vis[tx][ty][temp.time + 1]) {
				vis[tx][ty][temp.time + 1] += vis[temp.x][temp.y][temp.time];
				continue;
			}
			if (!isValid(tx, ty) || map[tx][ty] == '*' || temp.time+1>t) {
				continue;
			}
		
			vis[tx][ty][temp.time + 1] += vis[temp.x][temp.y][temp.time];
			q.push(Node(tx, ty, temp.time + 1));
		}
	}
}
int main() {
	cin >> n >> m >> t;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			cin >> map[i][j];
		}
	}
	cin >> sx >> sy >> ex >> ey;
	BFS(sx, sy, 0);
	cout << vis[ex][ey][t] << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值