[NOIP2004 提高组] 虫食算

题目描述

所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的数字。来看一个简单的例子:

\begin{aligned} \verb!43#9865#045! \\ +\qquad \verb!8468#6633! \\[-1em]\underline{\kern{8em}} \\ \verb!44445509678! \\ \end{aligned}43#9865#045+8468#6633​44445509678​

其中 # 号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是 55 和 33,第二行的数字是 55。

现在,我们对问题做两个限制:

首先,我们只考虑加法的虫食算。这里的加法是 nn 进制加法,算式中三个数都有 nn 位,允许有前导的 00。

其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的字母表示。如果这个算式是 nn 进制的,我们就取英文字母表的前 nn 个大写字母来表示这个算式中的 00 到 n - 1n−1 这 nn 个不同的数字:但是这 nn 个字母并不一定顺序地代表 00 到 n-1n−1。输入数据保证 nn 个字母分别至少出现一次。

\begin{aligned} \verb!BADC! \\ +\quad \verb!CBDA! \\[-1em]\underline{\kern{4em}} \\ \verb!DCCC! \\ \end{aligned}BADC+CBDA​DCCC​

上面的算式是一个4进制的算式。很显然,我们只要让 \verb!ABCD!ABCD 分别代表 01230123,便可以让这个式子成立了。你的任务是,对于给定的 nn 进制加法算式,求出 nn 个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解。

输入格式

输入的第一行是一个整数 nn,代表进制数。

第二到第四行,每行有一个由大写字母组成的字符串,分别代表两个加数以及和。这 33 个字符串左右两端都没有空格,从左到右依次代表从高位到低位,并且恰好有 nn 位。

输出格式

输出一行 nn 个用空格隔开的整数,分别代表 A,B, \dotsA,B,… 代表的数字。

输入输出样例

输入 #1复制

5
ABCED
BDACE
EBBAA

输出 #1复制

1 0 3 4 2

说明/提示

数据规模与约定
  • 对于 30\%30% 的数据,保证 n \le 10n≤10;
  • 对于 50\%50% 的数据,保证 n \le 15n≤15;
  • 对于 100\%100% 的数据,保证 1 \leq n \leq 261≤n≤26。

 

以个位为第一列,di表示第i列的进位情况,对于第i列,如果竖式是

那么显然有

去掉模运算得到

由于这是竖式加法,那么_显然k就是di_。

那就有

将常数项移到右边去

至此,方程列完了。

我们枚举di,进行求解。

显然 

 都是0,所以,我们只需要枚举 

 次,高斯消元的时间复杂度是 

 ,所以总的时间复杂度是 

 ,当然,这显然不够快,考虑优化。

我们发现,我们改变的只有常数项,所以,我们只做一次高斯消元。通过这次高斯消元,我们显然可以求出未知数的系数,那对于_常数项_呢?

##优化从这里开始

设第i个方程的_化简后_的常数项为 

 ,

设高斯消元之后得到的未知数的系数为**_K_**

那么,高斯消元后的矩阵就是这个样子的

我们再用一个数组 

 来保存第i个方程的化简后的常数项和 

 的关系

即 

那么显然,初始时, 

那高斯消元后,也就是这个样子

每次枚举出d数组的取值后,我们就可以用 

 的时间算出常数项 

 ,总的时间复杂度变为 

 ,但由于很多取值不用 

 的时间即可判定为不可行_(看我的check()函数)_,所以时间时间会比较短。

##你看懂了吗?(我猜你没看懂)

看看我举的例子:

我们来分析一下样例:

5 ABCED BDACE EBBAA 那么,我们可以列出矩阵

高斯消元后矩阵变为

枚举 

 ,根据增广矩阵的右边算出常数项即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 26
int n,equ,var,d[MAXN+10],x[MAXN+10];
typedef int matrix[MAXN+10][MAXN+10];
matrix a,g;
bool vis[MAXN+10];
char s[3][MAXN+10];
void Read(int &x){
    char c;
    while(c=getchar(),c!=EOF)
        if(c>='0'&&c<='9'){
            x=c-'0';
            while(c=getchar(),c>='0')
                x=x*10+c-'0';
            ungetc(c,stdin);
            return;
        }
}
void read(){
    Read(n);
    scanf("%s%s%s",s[0],s[1],s[2]);
    int i,j;
    for(i=0;i<n;i++){
        for(j=0;j<2;j++)
            a[n-i][s[j][i]-'A'+1]++;
        a[n-i][s[2][i]-'A'+1]--;
    }
    for(i=1;i<=n;i++)
        g[i][i]=n,g[i][i-1]=-1;
    g[1][0]=0;
    equ=var=n;
}
int gcd(int a,int b){
    int t;
    while(b){
        t=a%b;
        a=b;
        b=t;
    }
    return a;
}
void gauss_jordan(){
    int i,j,row,col,mxr,lcm;
    for(row=col=1;row<=equ&&col<=var;row++,col++){
        mxr=row;
        for(i=row+1;i<=equ;i++)
            if(abs(a[i][col])>abs(a[mxr][col]))
                mxr=i;
        if(mxr!=row)
            swap(a[row],a[mxr]),swap(g[row],g[mxr]);
        if(!a[row][col]){
            row--;
            continue;
        }
        for(i=1;i<=equ;i++)
            if(i!=row&&a[i][col]){
                lcm=a[i][col]/gcd(a[i][col],a[row][col])*a[row][col];
                int t1=lcm/a[i][col],t2=lcm/a[row][col];
                for(j=1;j<=var;j++){
                    g[i][j]=t1*g[i][j]-t2*g[row][j];
                    a[i][j]=t1*a[i][j]-t2*a[row][j];
                }
            }
    }
}
bool check(){
    int i,j;
    memset(vis,0,sizeof vis);
    for(i=1;i<=n;i++){
        x[i]=0;
        for(j=1;j<=n;j++)
            x[i]+=g[i][j]*d[j];
        if(x[i]%a[i][i]||x[i]/a[i][i]<0||x[i]/a[i][i]>=n||vis[x[i]/a[i][i]])
            return 0;
        x[i]/=a[i][i];
        vis[x[i]]=1;
    }
    return 1;
}
void print(){
    for(int i=1;i<n;i++)
        printf("%d ",x[i]);
    printf("%d\n",x[n]);
}
void dfs(int i){
    if(i==n){
        if(check()){
            print();
            exit(0);
        }
        return;
    }
    d[i]=1;
    dfs(i+1);
    d[i]=0;
    dfs(i+1);
}
int main()
{
    read();
    gauss_jordan();
    dfs(1);
}

 

  • 21
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值