线性dp
在线性结构上进行状态转移
LIS ,最长上升子序列。
问题描述 给定一个长度为n的数列a,求数值单调递增的子序列的长度最长是多少;
状态表示 dp[i]表示以a[i]为结尾的“最大上升子序列长度
转移方程:dp[i]=max{1+dp[j]}(0<=j<i,a[j]<a[i])
const int maxn=100006;
int s[maxn];
int dp[maxn];
int main(){
int n;
int res=0;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&s[i]);
for(int i=0;i<n;i++){
dp[i]=1;
for(int j=0;j<i;j++)
if(s[j]<=s[i])dp[i]=max(dp[j]+1,dp[i]);
res=max(res,dp[i]);
}
printf("%d\n",res);
}
LCS
问题描述:最长公共子序列。给定两个长度分别为n,m的字符串a,b,求既是a的子序列,又是b的子序列的字符串的长度最长是多少。
状态表示:对于两个序列来说,两者互相独立,互不干扰,要使用二维dp来存储信息。dp[i,j]表示a[1i]与b[1j]的最长公共子序列的长度
转移方程:若a[i]==b[j]:dp[i,j]=dp[i-1][j-1]+1; 否则,dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
const int maxn=1006;
char a[maxn];
char b[maxn];
int dp[maxn][maxn];
int main(){
int n,m;
gets(a);
gets(b);
int n=strlen(a);
int m=strlen(b);
int res=0;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(i==0||j==0){
dp[i][j]=0;
}else if(a[i]==b[j]){
dp[i][j]=dp[i+1][j-1]+1;
}else {
dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
}
res=max(res,dp[i][j]);
}
}
return res;
}
数字三角形
问题描述:给定一个共有N行的三角矩阵A,其中第i行有i列,从左上角出发,每次可以向下方或者向右下方走一步,最终到达底部,求把经过的所有位置上的数加起来,和最大
状态表示:dp[i][j]表示从左上角走到第i行第列,和最大为多少
转移方程:dp[i][j]=a[i][j]+max(dp[i-1][j],dp[i-1][j-1])
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int a[N][N], dp[N][N], n;
int main() {
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
cin>>a[i][j];
for(int i=n;i>=1;i--)
for(int j=1;j<=i;j++)
dp[i][j]+=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];
cout<<dp[1][1]<<endl;
return 0;
}