2021-02-16

这篇博客探讨了动态规划在解决三个经典问题中的应用:最长上升子序列(LIS)、最长公共子序列(LCS)以及数字三角形问题。LIS寻找给定数列中单调递增子序列的最大长度;LCS则涉及寻找两个字符串的最长公共子序列;数字三角形问题要求在给定的三角形矩阵中找出从左上角到右下角路径的最大和。文章通过代码示例详细解释了每个问题的状态表示和转移方程。
摘要由CSDN通过智能技术生成

线性dp

在线性结构上进行状态转移

LIS ,最长上升子序列。
问题描述 给定一个长度为n的数列a,求数值单调递增的子序列的长度最长是多少;
状态表示 dp[i]表示以a[i]为结尾的“最大上升子序列长度
转移方程:dp[i]=max{1+dp[j]}(0<=j<i,a[j]<a[i])

const int maxn=100006;
int s[maxn];
int dp[maxn];
int main(){
	int n;
	int res=0;
	scanf("%d",&n);
	for(int i=0;i<n;i++)
	scanf("%d",&s[i]);
	for(int i=0;i<n;i++){
		dp[i]=1;
 		for(int j=0;j<i;j++)
	   	if(s[j]<=s[i])dp[i]=max(dp[j]+1,dp[i]);
	  	res=max(res,dp[i]);
 	}
	printf("%d\n",res);
}

LCS
问题描述:最长公共子序列。给定两个长度分别为n,m的字符串a,b,求既是a的子序列,又是b的子序列的字符串的长度最长是多少。
状态表示:对于两个序列来说,两者互相独立,互不干扰,要使用二维dp来存储信息。dp[i,j]表示a[1i]与b[1j]的最长公共子序列的长度
转移方程:若a[i]==b[j]:dp[i,j]=dp[i-1][j-1]+1; 否则,dp[i][j]=max(dp[i+1][j],dp[i][j-1]);

const int maxn=1006;
char a[maxn];
char b[maxn];
int dp[maxn][maxn];
int main(){
	int n,m;
	gets(a);
	gets(b);
	int n=strlen(a);
	int m=strlen(b);
	int res=0;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			if(i==0||j==0){
				dp[i][j]=0;
			}else if(a[i]==b[j]){
				dp[i][j]=dp[i+1][j-1]+1;
			}else {
				dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
			}
			res=max(res,dp[i][j]);
		}
	}
	return res;
}

数字三角形
问题描述:给定一个共有N行的三角矩阵A,其中第i行有i列,从左上角出发,每次可以向下方或者向右下方走一步,最终到达底部,求把经过的所有位置上的数加起来,和最大
状态表示:dp[i][j]表示从左上角走到第i行第列,和最大为多少
转移方程:dp[i][j]=a[i][j]+max(dp[i-1][j],dp[i-1][j-1])

#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int a[N][N], dp[N][N], n;
int main() {
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
			cin>>a[i][j];
	for(int i=n;i>=1;i--)
		for(int j=1;j<=i;j++)
			dp[i][j]+=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];		
	cout<<dp[1][1]<<endl;
	return 0;
}	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值