在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。
示例 1:
输入: [7,5,6,4]
输出: 5
限制:
0 <= 数组长度 <= 50000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
在归并排序的思路中,我们总是分开解决一半,最后在将两个数组合并,那么如果我们更改合并函数的代码,使它不仅仅排序,而且在特定条件下计数逆序对,这样就能计算出所有的逆序对。
排序和逆序对有什么关系?
数组中的数没有改变,只是改变位置。
假设这个数组只有两个数,我们通过归并排序知道,它满足归并的最后一道工序,如果同时满足了逆序对,那么计数器加一,并排序。
如果是一个n位数组,在一半和后一半分别计算完逆序对和排序完成后,左边的下标是整体小于右边的,无论哪边的数的位置在它那半边的位置如何改变,都不会影响它与对边那群数的比较,因为每次排序我们都是在不影响逆序对(不计数)和影响逆序对(但计数)的情况下排序的。
C++实现:
int merge_sort(vector<int>& nums, int left, int right, vector<int>& temp)
{
//先写递归出口
if (left == right)
{
return 0;
}
//再写递归条件
int mid = left + (right - left) / 2;
int num = merge_sort(nums, left, mid, temp) + merge_sort(nums, mid + 1, right, temp);//逆序对的数量 = 左边的数量+右边的数量
//排序并查找
int i = left;
int j = mid + 1;
for (int k = left; k <= right; k++)
{
temp.at(k) = nums.at(k);
}
for (int k = left; k <= right; k++)
{
if (i > mid)
{
nums.at(k) = temp.at(j++);
}
else if (j > right || temp.at(i) <= temp.at(j))
{
nums.at(k) = temp.at(i++);
}
else
{
nums.at(k) = temp.at(j++);
num += mid - i + 1; //去掉这句,再修改一下返回值,就是归并排序
}
}
return num;
}
int reversePairs(vector<int>& nums)
{
vector<int> temp(nums.size());//辅助数组
//先判断一下nums需不需要排序
if (nums.size() < 2)
{
return 0;
}
return merge_sort(nums, 0, nums.size() - 1, temp);
}