C++ 剑指Offer51.归并排序的应用之一——逆序对

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:

输入: [7,5,6,4]
输出: 5

限制:

0 <= 数组长度 <= 50000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

在归并排序的思路中,我们总是分开解决一半,最后在将两个数组合并,那么如果我们更改合并函数的代码,使它不仅仅排序,而且在特定条件下计数逆序对,这样就能计算出所有的逆序对。

排序和逆序对有什么关系?

数组中的数没有改变,只是改变位置。

假设这个数组只有两个数,我们通过归并排序知道,它满足归并的最后一道工序,如果同时满足了逆序对,那么计数器加一,并排序。

如果是一个n位数组,在一半和后一半分别计算完逆序对和排序完成后,左边的下标是整体小于右边的,无论哪边的数的位置在它那半边的位置如何改变,都不会影响它与对边那群数的比较,因为每次排序我们都是在不影响逆序对(不计数)和影响逆序对(但计数)的情况下排序的。

C++实现:

int merge_sort(vector<int>& nums, int left, int right, vector<int>& temp)
{
	//先写递归出口
	if (left == right)
	{
		return 0;
	}
	//再写递归条件
	int mid = left + (right - left) / 2;
	int num = merge_sort(nums, left, mid, temp) + merge_sort(nums, mid + 1, right, temp);//逆序对的数量 = 左边的数量+右边的数量
	//排序并查找
	int i = left;
	int j = mid + 1;
	for (int k = left; k <= right; k++)
	{
		temp.at(k) = nums.at(k);
	}
	for (int k = left; k <= right; k++)
	{
		if (i > mid)
		{
			nums.at(k) = temp.at(j++);
		}
		else if (j > right || temp.at(i) <= temp.at(j))
		{
			nums.at(k) = temp.at(i++);
		}
		else
		{
			nums.at(k) = temp.at(j++);
			num += mid - i + 1; //去掉这句,再修改一下返回值,就是归并排序
		}
	}
	return num;
}

int reversePairs(vector<int>& nums)
{
	vector<int> temp(nums.size());//辅助数组
	//先判断一下nums需不需要排序
	if (nums.size() < 2)
	{
		return 0;
	}
	return merge_sort(nums, 0, nums.size() - 1, temp);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橙子砰砰枪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值