C++基于深搜和减治法的拓扑排序

基于深搜

/*
* 拓扑排序是对有向无环图AOV的排序
* 拓扑排序适用场景:有一项流水线作业,有先后完成的顺序,将作业排序
* 这里只考虑两种实现方式:1.基于深搜 2.减治法
* 如果图只有一个入度为0的点,那么深搜的结果就是拓扑排序的结果
* 如果入度为0的点不止有一个,那么结果就不一定正确,所以要在深搜的基础上进行一些改进
* 改进方法,在出栈的时候再访问,然后将访问过的节点倒序,就是拓扑的结果
* 如果适用迭代,注意入度为0的点需要单独判断,因为它没法入栈
*/

#include <vector>
#include <iostream>
using namespace std;
#define MAX 7 //节点数量
char node[MAX]; //存储节点的容器
int node_edge[MAX][MAX]; //邻接矩阵
vector<char> dfs; //算法实现的辅助栈
bool visited[MAX]; //记录已经访问过的节点

 //输入
void InPut()
{
	//依次输入节点
	cout << "Input nodes :" << endl;
	for (int i = 0; i < MAX; i++)
	{
		cin >> node[i];
	}
	// 1代表有边,0代表无边
	cout << "Input edges:" << endl;
	for (int i = 0; i < MAX; i++)
	{
		for (int j = 0; j < MAX; j++)
		{
			cin >> node_edge[i][j];
		}
	}
	//将访问标记数组初始化
	memset(visited, false, MAX);
}

void DFS_sort()
{
	//要多加一步,找出入度为0的点,否则的话,会漏掉这个点
	int temp[MAX];
	memset(temp, 1, MAX * 4);
	for (int j = 0; j < MAX; j++)
	{
		int i = 0;
		for (i; i < MAX; i++)
		{
			if (node_edge[i][j] == 1)
			{
				break;
			}
		}
		if (i == MAX)
		{
			//这是一个入度为0的点
			temp[j] = 0;
		}
	}

	vector<char> values;
	//先取出第一个顶点
	char n = node[0];
	//判断这个点是不是入度为0的点,如果不是,继续,如果是,找到这个点,让他在容器里
	if (temp[0] == 0)
	{
		//这是一个入度为0的点,已经取出来,标志为1
		temp[0] = 1;
	}
	//入栈
	dfs.push_back(n);
	while (!dfs.empty())
	{
		//获取栈顶元素
		char ch = dfs.back();
		//获取栈顶元素坐标
		int index;
		for (index = 0; index < MAX; index++)
		{
			if (node[index] == ch)
			{
				break;
			}
		}
		//判断是否已经被访问过
		if (visited[index] == false)
		{
			//将这个节点的最近的一个没有被访问过的节点入栈
			int i;
			for (i = 0; i < MAX; i++)
			{
				if (node_edge[index][i] == 1 && visited[i] == false)
				{
					//入栈
					dfs.push_back(node[i]);
					break;
				}
			}
			if (i == MAX)
			{
				//所有邻接点都访问过了,出栈,进入结果栈
				values.push_back(ch);
				//标记已经被访问
				visited[index] = true;
				dfs.pop_back();
				//如果栈为空,将下一个入度为0的点放入栈
				if (dfs.empty())
				{
					for (int i = 0; i < MAX; i++)
					{
						if (temp[i] == 0)
						{
							dfs.push_back(node[i]);
							temp[i] = 1;
						}
					}
				}
			}
			continue;
		}
	}
	for (int i = MAX - 1; i >= 0; i--)
	{
		cout << values.at(i) << " ";
	}
}
int main()
{
	InPut();
	DFS_sort();
	//Sub_sort();
	return 0;
}

减治法

/*
* 减治法
* 1.找到一个入度为0的点
* 2.访问这个点,并删除
*/
void Sub_sort()
{
	//记录每个节点的入度
	int temp[MAX];
	memset(temp, 1, MAX * 4);
	for (int j = 0; j < MAX; j++)
	{
		int in = 0;
		for (int i = 0; i < MAX; i++)
		{
			if (node_edge[i][j] == 1)
			{
				in++;
			}
		}
		temp[j] = in;
	}

	//将第一个入度为0的点入栈
	vector<char> values;
	for (int i = 0; i < MAX; i++)
	{
		if (temp[i] == 0)
		{
			dfs.push_back(node[i]);
			temp[i] = -1;
		}
	}

	while (!dfs.empty())
	{
		//获取栈顶元素
		char ch = dfs.back();
		//获取栈顶元素坐标
		int index;
		for (index = 0; index < MAX; index++)
		{
			if (node[index] == ch)
			{
				break;
			}
		}
		//输出栈顶元素
		cout << node[index] << " ";
		//栈顶元素出栈
		dfs.pop_back();
		//将这个点的邻居点的入度-1
		for (int j = 0; j < MAX; j++)
		{
			if (node_edge[index][j] == 1)
			{
				temp[j]--;
			}
		}
		//找下一个入度为0的点进栈
		for (int i = 0; i < MAX; i++)
		{
			if (temp[i] == 0)
			{
				dfs.push_back(node[i]);
				temp[i] = -1;
			}
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橙子砰砰枪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值