- 博客(5)
- 收藏
- 关注
原创 本地模型Qwen2-0.5B-Instruct结合faiss实现RAG
print(f"与查询文本相似度最高的文本是: {texts[max_similarity_idx]}")# print(f"与查询文本相似度最高的文本是: {texts[max_similarity_idx1]}")print(f"文本 {i + 1} 与查询文本的相似度: {similarity:.4f}")print(f"与查询文本相似度最高的文本是: {texts[max_similarity_idx]}")下面需要注意的是数据只能是TXT文本,如果需要其他格式的要你自己改。
2024-08-06 20:46:47 756
原创 国内用modelscop下载glm-4-9b-chat大模型权重
汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。安装modelscope。在以下社区找到对应模型。
2024-03-06 10:28:37 904
原创 Langchain-chatchat(开源项目基于知识库的问答)
上面的命令是将6006端口映射成127.0.0.1:6006这样的本地demo,他@后面的ip需要换成你建的服务器的ip,-p后的端口号换成你自己服务器的端口。它有28层transform,每层transform里有32个头,embeding是4096维度进行编码。本文章基于Autodl服务器部署的开源项目(可以去租一个16G或24G的服务器)里面的ssh对于新手可能不太好理解他需要你在本地cmd里创建相对应的接口。这里是用chatglm2-6b的模型需要12.5G的显存。1.基于LLM的对话。
2023-09-14 20:41:43 1009 3
原创 transformer的输入到输出(维度以及矩阵计算)
维度变化:q*k.T=(3,5)*(5,3)=(3,3)(/^dk和softmax矩阵维度不变)维度变化:q*k.T=(3,5)*(5,3)=(3,3)(/^dk和softmax矩阵维度不变)z=(3,5*4)=(3,20) 注意力机制到这里就结束了(z为提取的向量特征)之后乘v=(3,3)*(3,5)=(3,5)(由于为4头注意力机制所以5乘4)之后乘v=(3,3)*(3,5)=(3,5)(由于为4头注意力机制所以5乘4)y=(3,5)的一个矩阵(包含了位置向量和单词向量)
2023-07-05 20:31:15 8536 5
原创 run - py: error : unrecognized arguments:run.pyRun-py:错误:无法识别的参数:run.py
运行文件异常报错
2023-03-27 13:51:18 1904
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人