POJ 3468 A Simple Problem with Integers 线段树的成段更新

24 篇文章 0 订阅
21 篇文章 0 订阅
  这题的要点是线段树的成段更新,和LAZY思想,用LAZY思想能减少时间,注意存放数据要用long long,不知道为什么这题输入一定要用__int64 的 %I64d.
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define maxn 100000
#define mem(a) memset(a, 0, sizeof(a))
using namespace std;

long long sum[maxn * 4 + 5];
long long col[maxn * 4 + 5];

void build(int l, int r, int n)
{
	if(l == r)
	{
		scanf("%I64d", &sum[n]);
        return;
	}
	int mid = (l + r) / 2;
	build(l, mid, n * 2);
	build(mid + 1, r, n * 2 + 1);
	sum[n] = sum[n * 2] + sum[n * 2 + 1];
}

void add(int l, int r, int n, int ll, int rr, int x)
{
	if(l >= ll&&r <= rr)
	{
		sum[n] += ((r - l + 1) * (long long)x);
		col[n] += x;
		return;
	}
	if(col[n])
	{
		col[n * 2] += col[n];
		col[n * 2 + 1] += col[n];
		sum[n * 2] += (col[n] * (r - l + 1 - (r - l + 1) / 2));
		sum[n * 2 + 1] += (col[n] * ((r - l + 1) / 2));
		col[n] = 0;
	}
	int mid = (l + r) / 2;
	if(ll <= mid)
	add(l, mid, n * 2, ll, rr, x);
	if(rr > mid)
	add(mid + 1, r, n * 2 + 1, ll, rr, x);
	sum[n] = sum[n * 2] + sum[n * 2 + 1];
}

long long ans(int l, int r, int n, int ll, int rr)
{
	if(l >= ll&&r <= rr)
	{
		return sum[n];
	}
	if(col[n])
	{
		col[n * 2] += col[n];
		col[n * 2 + 1] += col[n];
		sum[n * 2] += (col[n] * (r - l + 1 - (r - l + 1) / 2));
		sum[n * 2 + 1] += (col[n] * ((r - l + 1) / 2));
		col[n] = 0;
	}
	int mid = (l + r) / 2;
	long long res = 0;
	if(ll <= mid)
	res += ans(l, mid, n * 2, ll, rr);
	if(rr > mid)
	res += ans(mid + 1, r, n * 2 + 1, ll, rr);
	return res;
}

int main(int argc, char *argv[])
{
	int q, a, b, v, i, num; 
	char ch;
	scanf("%d%d", &num, &q);
    build(1, num, 1);
    scanf("%*c");
    for(i = 0;i < q;i++)
    {
    	scanf("%c", &ch);
    	if(ch == 'Q')
    	{
	    	scanf("%d%d%*c", &a, &b);
	    	printf("%lld\n", ans(1, num, 1, a, b));
	    }
	    else if(ch == 'C')
	    {
    		scanf("%d%d%d%*c", &a, &b, &v);
    		add(1, num, 1, a, b, v);
    	}
    }
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值