[JZOJ 2265]【Usaco DEC06 Gold】Milk Patterns

2 篇文章 0 订阅
1 篇文章 0 订阅
Description
  农夫John发现他的奶牛产奶的质量一直在变动。经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠。我们称之为一个“模式”。
  John的牛奶按质量可以被赋予一个0到1000000之间的数。并且John记录了N(1<=N<=20000)天的牛奶质量值。他想知道最长的出现了至少K(2<=K<=N)次的模式的长度。
  比如1 2 3 2 3 2 3 1 中 2 3 2 3出现了两次。当K=2时,这个长度为4。

Input
  * Line 1: 两个整数 N,K。
  * Lines 2..N+1: 每行一个整数表示当天的质量值。
Output
  * Line 1: 一个整数:N天中最长的出现了至少K次的模式的长度

Sample Input
8 2
1
2
3
2
3
2
3
1

Sample Output
4


题目做法还是比较明显的,相当于问一个串中,出现了k次的最长串的长度,这样我们可以考虑SA来确定哪些串是出现了k的——height数组的一些连续的值可以反映这一点。然后我们其实就将问题转化成了求ans =max{min(h[i]...h[i+k-2])}这样的话,我们可以预处理一个rmq来解决这个问题(这次用了树状数组)




#include<cstdio>
#include<algorithm>
#define maxn 1000100
using namespace std;
int ws[maxn],wv[maxn],a[maxn],x[maxn],y[maxn],t[maxn],sa[maxn],idx[maxn],h[maxn],n,l,ans;
void init(){
	scanf("%d%d",&n,&l);
	for (int i = 1 ; i <= n ; i ++) scanf("%d",&a[i]);
}

bool cmp(int *rank,int a,int b,int l){
	return (rank[a] == rank[b] && rank[a+l] == rank[b+l]);
}

void da(int *x,int *y,int *t){
	int i,j,p,m = maxn;
	for (i = 0 ; i <= m ; i ++) ws[i] = 0;
	for (i = 1 ; i <= n ; i ++) ws[x[i] = a[i]] ++;
	for (i = 1 ; i <= m ; i ++) ws[i] += ws[i - 1];
	for (i = n ; i >= 1 ; i --) sa[ws[x[i]] --] = i;
	for (j = 1,p = 1 ; p < n ; j *= 2,m = p){
		for (p = 0,i = n - j + 1 ; i <= n ; i ++) y[++ p] = i;
		for (i = 1 ; i <= n ; i ++) if (sa[i] > j) y[++ p] = sa[i] - j;
		for (i = 0 ; i <= m ; i ++) ws[i] = 0;
		for (i = 1 ; i <= n ; i ++) wv[i] = x[y[i]];
		for (i = 1 ; i <= n ; i ++) ws[wv[i]] ++;
		for (i = 1 ; i <= m ; i ++) ws[i] += ws[i - 1];
		for (i = n ; i >= 1 ; i --) sa[ws[wv[i]] --] = y[i];
		for (t = x,x = y,y = t,p = 1,i = 2,x[sa[1]] = 1 ; i <= n ; i ++)
			x[sa[i]] = cmp(y,sa[i - 1],sa[i],j) ? p : ++ p;
	}
}

void calc(){
	int k = 0,j,i;
	for (i = 1 ; i <= n ; i ++) x[sa[i]] = i;
	for (i = 1 ; i <= n ; h[x[i ++]] = k)
		for (k ? k -- : 0,j = sa[x[i] - 1] ; a[i + k] == a[j + k] ; k ++);
}

int lowbit(int x){
	return -x & x;
}

int Query(int l,int r){
	int ans = h[r];
	while(1){
		ans = min(ans,h[r]);
		if(r == l) break;
		for(r -= 1 ; r - l >= lowbit(r) ; r -= lowbit(r)) ans = min(ans,idx[r]);
	}
    return ans;
}

void rmq(){
	for (int i = 1 ; i <= n ; i ++) idx[i] = h[i];
	for (int i = 1 ; i <= n ; i ++)
	for (int j = i ; j <= n ; j += lowbit(j)) idx[j]=min(idx[j],h[i]);
}

void work(){
	da(x,y,t);
	calc();
	rmq();
	for (int i = 1 ; i <= n - (l - 2) ; i ++)ans = max(Query(i,i + l - 2),ans);
}

int main(){
	init();
	work();
	printf("%d",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值